Skip to main content

RNA Footprinting Using Small Chemical Reagents

  • Protocol
  • First Online:
RNA Scaffolds

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2323))

Abstract

RNA is a pivotal element of the cell which is most of the time found in complex with protein(s) in a cellular environment. RNA can adopt three-dimensional structures that may form specific binding sites not only for proteins but for all sorts of molecules. Since the early days of molecular biology, strategies to probe RNA structure have been developed. Such probes are small molecules or RNases that most of the time specifically react with single strand nucleotides. The precise reaction or cleavage site can be mapped by reverse transcription. It appears that nucleotides in close contact or in proximity of a ligand are no longer reactive to these probes. Carrying the RNA probing experiment in parallel in presence and absence of a ligand yield differences that are known as the ligand “footprint.” Such footprints allow for the identification of the precise site of the ligand interaction, but also reveals RNA structural rearrangement upon ligand binding. Here we provide an experimental and analytical workflow to carry RNA footprinting experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. von Ahsen U, Noller HF (1993) Footprinting the sites of interaction of antibiotics with catalytic group I intron RNA. Science 260:1500–1503

    Article  Google Scholar 

  2. Angulo J, Ulryck N, Deforges J et al (2016) LOOP IIId of the HCV IRES is essential for the structural rearrangement of the 40SHCV IRES complex. Nucleic Acids Res 44:1309–1325

    Article  CAS  Google Scholar 

  3. Brunel C, Romby P (2000) Probing RNA structure and RNA-ligand complexes with chemical probes. In: Methods in enzymology, vol 318. Academic Press, Cambridge, Massachusetts, pp 3–21

    Google Scholar 

  4. Ehresmann C, Baudin F, Mougel M et al (1987) Probing the structure of RNAs in solution. Nucleic Acids Res 15:9109–9128

    Article  CAS  Google Scholar 

  5. de Bisschop G, Ameur M, Ulryck N et al (2019) HIV-1 gRNA, a biological substrate, uncovers the potency of DDX3X biochemical activity. Biochimie 164:83–94

    Article  Google Scholar 

  6. Ryder SP, Recht MI, Williamson JR (2008) Quantitative analysis of protein-RNA interactions by gel mobility shift. Methods Mol Biol 488:99–115

    Article  CAS  Google Scholar 

  7. Sargueil B, Pecchia DB, Burke JM (1995) An improved version of the hairpin ribozyme functions as a ribonucleoprotein complex. Biochemistry 34:7739–7748

    Article  CAS  Google Scholar 

  8. Carey J, Cameron V, de Haseth PL et al (1983) Sequence-specific interaction of R17 coat protein with its ribonucleic acid binding site. Biochemistry 22:2601–2610

    Article  CAS  Google Scholar 

  9. Chamond N, Deforges J, Ulryck N et al (2014) 40S recruitment in the absence of eIF4G/4A by EMCV IRES refines the model for translation initiation on the archetype of Type II IRESs. Nucleic Acids Res 42:10373–10384

    Article  CAS  Google Scholar 

  10. Deforges J, de Breyne S, Ameur M et al (2017) Two ribosome recruitment sites direct multiple translation events within HIV1 gag open reading frame. Nucleic Acids Res 45:7382–7400

    Article  CAS  Google Scholar 

  11. Vallejos M, Deforges J, Plank TD et al (2011) Activity of the human immunodeficiency virus type 1 cell cycle-dependent internal ribosomal entry site is modulated by IRES trans-acting factors. Nucleic Acids Res 39:6186–6200

    Article  CAS  Google Scholar 

  12. Chillón I, Marcia M, Legiewicz M et al (2015) Chapter one - native purification and analysis of long RNAs. In: Woodson SA, Allain FHT (eds) Methods in enzymology, vol 558. Academic Press, Cambridge, Massachusetts, pp 3–37

    Google Scholar 

  13. Herschlag D (1995) RNA chaperones and the RNA folding problem. J Biol Chem 270:20871–20874

    Article  CAS  Google Scholar 

  14. Jaeger L, Westhof E, Michel F (1993) Monitoring of the cooperative unfolding of the sunY group I intron of bacteriophage T4: the active form of the sunY ribozyme is stabilized by multiple interactions with 3′ terminal intron components. J Mol Biol 234:331–346

    Article  CAS  Google Scholar 

  15. Uhlenbeck OC (1995) Keeping RNA happy. RNA 1:4–6

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Karabiber F, McGinnis JL, Favorov OV et al (2013) QuShape: rapid, accurate, and best practices quantification of nucleic acid probing information, resolved by capillary electrophoresis. RNA 19:63–73

    Article  CAS  Google Scholar 

  17. Cantara WA, HatterschideJ WW et al (2017) RiboCAT: a new capillary electrophoresis data analysis tool for nucleic acid probing. RNA 23:240–249

    Article  CAS  Google Scholar 

  18. Mitra S, Shcherbakova IV, Altman RB et al (2008) High-throughput single nucleotide structural mapping by capillary automated footprinting analysis. Nucleic Acids Res 36:e63–e63

    Article  Google Scholar 

  19. Pang PS, Elazar M, Pham EA et al (2011) Simplified RNA secondary structure mapping by automation of SHAPE data analysis. Nucleic Acids Res 39:e151

    Article  Google Scholar 

  20. Kim H, Cordero P, Das R et al (2013) HiTRACE-web: an online tool for robust analysis of highthroughput capillary electrophoresis. Nucleic Acids Res 41:W492–W498

    Article  Google Scholar 

  21. Yoon S, Kim J, Hum J et al (2011) HiTRACE: high-throughput robust analysis for capillary electrophoresis. Bioinformatics 27:1798–1805

    Article  CAS  Google Scholar 

  22. Deigan KE, Li TW, Mathews DH et al (2009) Accurate SHAPE-directed RNA structure determination. PNAS 106:97–102

    Article  CAS  Google Scholar 

  23. Spasic A, Assmann SM, Bevilacqua PC et al (2018) Modeling RNA secondary structure folding ensembles using SHAPE mapping data. Nucleic Acids Res 46:314–323

    Article  CAS  Google Scholar 

  24. Lorenz R, Luntzer D, Hofacker IL et al (2016) SHAPE directed RNA folding. Bioinformatics 32:145–147

    CAS  PubMed  Google Scholar 

  25. Saaidi A, Allouche D, Regnier M, Sargueil B, Ponty Y (2020) IPANEMAP: integrative probing analysis of nucleic acids empowered by multiple accessibility profiles. Nucleic Acids Res 48:8276–8289

    Google Scholar 

  26. Siegfried NA, Busan S, Rice GM et al (2014) RNA motif discovery by SHAPE and mutational profiling (SHAPE-MaP). Nat Methods 11:959–965

    Article  CAS  Google Scholar 

  27. Zubradt M, Gupta P, Persad S et al (2017) DMS-MaPseq for genome-wide or targeted RNA structure probing in vivo. Nat Methods 14:75–82

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank N Chamond, L Ponchon, and C Vasnier for sharing their protocols and tips, and for fruitful discussions, and M Pospiech for careful proofreading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Sargueil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

De Bisschop, G., Sargueil, B. (2021). RNA Footprinting Using Small Chemical Reagents. In: Ponchon, L. (eds) RNA Scaffolds. Methods in Molecular Biology, vol 2323. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1499-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1499-0_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1498-3

  • Online ISBN: 978-1-0716-1499-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics