Skip to main content

Generation of Mitochondrial Toxin Rodent Models of Parkinson’s Disease Using 6-OHDA , MPTP , and Rotenone

  • Protocol
  • First Online:
Experimental Models of Parkinson’s Disease

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2322))

Abstract

Several animal models are employed to discover novel treatments for the symptoms of Parkinson’s disease (PD). PD models can be divided into two models: neurotoxin models and genetic models. Among neurotoxins to produce PD models, 6-hydroxydopamine (6-OHDA), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), and rotenone, which inhibit the mitochondrial complex I, are widely used. Animal models of PD using these neurotoxins are also known as mitochondrial toxin models. Here this chapter describes the preparation of these mitochondrial toxin models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blesa J, Phani S, Jackson-Lewis V, Przedborski S (2012) Classic and new animal models of Parkinson’s disease. J Biomed Biotechnol 2012:845618. https://doi.org/10.1155/2012.845618

    Article  PubMed  PubMed Central  Google Scholar 

  2. Blesa J, Przedborski S (2014) Parkinson’s disease: animal models and dopaminergic cell vulnerability. Front Neuroanat 8:155. https://doi.org/10.3389/fnana.2014.00155

    Article  PubMed  PubMed Central  Google Scholar 

  3. More SV, Kumar H, Cho DY, Yun YS, Choi DK (2016) Toxin-induced experimental models of learning and memory impairment. Int J Mol Sci 17:1447. https://doi.org/10.3390/ijms17091447

    Article  CAS  PubMed Central  Google Scholar 

  4. Kin K, Yasuhara T, Kameda M, Date I (2019) Animal models for Parkinson’s disease research: trends in the 2000s. Int J Mol Sci 20:5402. https://doi.org/10.3390/ijms20215402

    Article  CAS  PubMed Central  Google Scholar 

  5. Johnson ME, Bobrovskaya L (2015) An update on the rotenone models of Parkinson’s disease: their ability to reproduce the features of clinical disease and model gene-environment interactions. Neurotoxicol 46:101–116. https://doi.org/10.1016/j.neuro.2014.12.002

    Article  CAS  Google Scholar 

  6. Senoh S, Witkop B (1959) Non-enzymic conversions of dopamine to norepinephrine and trihydroxyphenethylamines. J Am Chem Soc 81:6222–6231

    Article  CAS  Google Scholar 

  7. Ungerstedt U (1968) 6-hydroxy-dopamine induced degeneration of central monoamine neurons. Eur J Pharmacol 5:107–110. https://doi.org/10.1016/0014-2999(68)90164-7

    Article  CAS  PubMed  Google Scholar 

  8. Konnova EA, Swanberg M (2018) Animal models of Parkinson’s disease. In: Stoker TB, Greenland JC (eds) Parkinson’s disease: pathogenesis and clinical aspects [Internet]. Codon Publications, Brisbane

    Google Scholar 

  9. Schober A (2004) Classic toxin-induced animal models of Parkinson’s disease: 6-OHDA and MPTP. Cell Tissue Res 318:215–224. https://doi.org/10.1007/s00441-004-0938-y

    Article  PubMed  Google Scholar 

  10. Langston JW, Ballard P, Tetrud JW, Irwin I (1983) Chronic parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219:979–980. https://doi.org/10.1126/science.6823561

    Article  CAS  PubMed  Google Scholar 

  11. Javitch JA, D’Amato RJ, Strittmatter SM, Snyder SH (1985) Parkinsonism-inducing neurotoxin, N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine: uptake of the metabolite N-methyl-4-phenylpyridine by dopamine neurons explains selective toxicity. Proc Natl Acad Sci U S A 82:2173–2177. https://doi.org/10.1073/pnas.82.7.2173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bezard E, Gross CE, Fournier MC, Dovero S, Bloch B, Jaber M (1999) Absence of MPTP-induced neuronal death in mice lacking the dopamine transporter. Exp Neurol 155:268–273. https://doi.org/10.1006/exnr.1998.6995

    Article  CAS  PubMed  Google Scholar 

  13. Cui M, Aras R, Christian WV, Rappold PM, Hatwar M, Panza J et al (2009) The organic cation transporter-3 is a pivotal modulator of neurodegeneration in the nigrostriatal dopaminergic pathway. Proc Natl Acad Sci U S A 106:8043–8048. https://doi.org/10.1073/pnas.0900358106

    Article  PubMed  PubMed Central  Google Scholar 

  14. Guillot TS, Miller GW (2009) Protective actions of the vesicular monoamine transporter 2 (VMAT 2) in monoaminergic neurons. Mol Neurobiol 39:149–170. https://doi.org/10.1007/s12035-009-8059-y

    Article  CAS  PubMed  Google Scholar 

  15. Xiong N, Long X, Xiong J, Jia M, Chen C, Huang J et al (2012) Mitochondrial complex I inhibitor rotenone-induced toxicity and its potential mechanisms in Parkinson’s disease models. Crit Rev Toxicol 42:613–632. https://doi.org/10.3109/10408444.2012.680431

    Article  CAS  PubMed  Google Scholar 

  16. Heikkalia RE, Nicklas WJ, Vyas I, Duvoisin RC (1985) Dopaminergic toxicity of rotenone and the 1-methyl-4-phenylpyridinium ion after their stereotaxic administration to rats: implication for the mechanism of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity. Neurosci Lett 62:389–394. https://doi.org/10.1016/0304-3940(85)90580-4

    Article  Google Scholar 

  17. Przedborski S, Jackson-Lewis V, Naini AB, Jakowec M, Petzinger G, Miller R et al (2001) The parkinsonian toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): a technical review of its utility and safety. J Neurochem 76:1265–1274. https://doi.org/10.1046/j.1471-4159.2001.00183.x

    Article  CAS  PubMed  Google Scholar 

  18. Jackson-Lewis V, Przedborski S (2007) Protocol of the MPTP mouse model of Parkinson’s disease. Nat Protoc 2:141–151. https://doi.org/10.1038/nprot.2006.342

    Article  CAS  PubMed  Google Scholar 

  19. Betarbet R, Sherer TB, MacKinzie G, Gracia-Osuna M, Panov AV, Greenamyre JT (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 3:1301–1306. https://doi.org/10.1038/81834

    Article  CAS  PubMed  Google Scholar 

  20. Maegawa H, Morimoto Y, Kudo C, Hanamoto H, Boku A, Sugimira M et al (2015) Neural mechanism underlying hyperalgesic response to orofacial pain in Parkinson’s disease model rats. Neurosci Res 96:59–68. https://doi.org/10.1016/j.neures.2015.01.006

    Article  PubMed  Google Scholar 

  21. Yasuda T, Hayakawa H, Nihira T, Ren YR, Nakata Y, Nagai M et al (2011) Parkin-mediated protection of dopaminergic neurons in a chronic MPTP-minipump mouse model of Parkinson disease. J Neuropathol Exp Neurol 70:686–697. https://doi.org/10.1097/NEN.0b013e3182269ecd

    Article  PubMed  Google Scholar 

  22. Morais LH, Lima MMS, Martynhak BJ, Santiago R, Takahashi TT, Ariza D et al (2012) Characterization of motor, depressive-like and neurochemical alterations induced by a short-term rotenone administration. Pharmacol Rep 64:1081–1090. https://doi.org/10.1016/s1734-1140(12)70905-2

    Article  CAS  PubMed  Google Scholar 

  23. Santiago RM, Barbieiro J, Lima MM, Dombrowski PA, Andreatini R, Vital MA et al (2010) Depressive-like behaviors alterations induced by intranigral MPTP, 6-OHDA, LPS and rotenone models of Parkinson’s disease are predominantly associated with serotonin and dopamine. Prog Neuropsycopharmacol Biol Psychiarty 34:1104–1114. https://doi.org/10.1016/j.pnpbp.2010.06.004

    Article  CAS  Google Scholar 

  24. Moreira CG, Barbiero JK, Ariza D, Dombrowski PA, Sabioni P, Bortotanza M et al (2012) Behavioral, neurochemical and histological alterations promoted by bilateral intranigral rotenone administration: a new approach for an old neurotoxin. Neurotox Res 21:291–301. https://doi.org/10.1007/s12640-011-9278-3

    Article  CAS  PubMed  Google Scholar 

  25. Sherer TB, Kim JH, Betarbet R, Greenamyre JT (2003) Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and alpha-synuclein aggregation. Exp Neurol 179:9–16. https://doi.org/10.1006/exnr.2002.8072

    Article  CAS  PubMed  Google Scholar 

  26. Chemical Book (2006) Chemicalbook Inc. https://www.chemicalbook.com/ChemicalProductProperty_JP_CB6397762.htm. Accessed 16 Mar 2020

  27. Roeling TAP, Docter GJ, Voorn P, Melchers BPC, Wolters EC, Groenwegen HJ (1995) Effects of unilateral 6-hydroxydopamine lesions on neuropeptide immunoreactivity in the basal ganglia of the common marmoset, Callithrix jacchus, a quantitative immunohistochemical analysis. J Chem Neuroanat 9:155–164. https://doi.org/10.1016/0891-0618(95)00072-0

    Article  CAS  PubMed  Google Scholar 

  28. Valette H, Deleuze P, Syrota A, Delforqe J, Crouzel C, Fuseau C et al (1997) Canine myocardial beta-adrenergic, muscarinic receptor densities after denervation: a PET study. J Nucl Med 36:140–146

    Google Scholar 

  29. Annett LE, Torres EM, Clarke DJ, Ishida Y, Barker RA, Ridley RM et al (1997) Survival of nigral grafts within the striatum of marmosets with 6-OHDA lesions depends critically in donor embryo age. Cell Transplant 6:557–569. https://doi.org/10.1016/s0963-6897(97)00079-1

    Article  CAS  PubMed  Google Scholar 

  30. Ruffy R, Leonard M (1997) Chemical cardiac sympathetic denervation hampers defibrillation in the dog. J Cardiovasc Electrophysiol 8:62–67. https://doi.org/10.1111/j.1540-8167.1997.tb00609.x

    Article  CAS  PubMed  Google Scholar 

  31. Ho YH, Nam MH, Choi I, Min J, Jeon SR (2020) Optogenetic inactivation of the entopeduncular nucleus improves forelimb akinesia in a Parkinson's disease model. Behav Brain Res 386:11251. https://doi.org/10.1016/j.bbr.2020.112551

    Article  CAS  Google Scholar 

  32. Yang SQ, Tian Q, Li D, He SQ, Hu M, Liu SY et al (2020) Leptin mediates protection of hydrogen sulfide against 6-hydroxydopamine-induced Parkinson’s disease: involving enhancement in Warburg effect. Neurochem Int 135:104692. https://doi.org/10.1016/j.neuint.2020.104692

    Article  CAS  PubMed  Google Scholar 

  33. Zigmond MJ, Berger TW, Grace AA, Stricker EM (1989) Compensatory responses to nigrostriatal bundle injury. Studies with 6-hydroxydopamine in an animal model of parkinsonism. Mol Chem Neuropathol 10:185–200. https://doi.org/10.1007/bf03159728

    Article  CAS  PubMed  Google Scholar 

  34. Chiueh CC, Markey SP, Burns RS (1984) Neurochemical and behavioral effects of systemic and intranigral administration of N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in the rat. Eur J Pharmcol 100:189–194. https://doi.org/10.1016/0014-2999(84)90221-8

    Article  CAS  Google Scholar 

  35. Xiong N, Huang J, Zhang Z, Zhang Z, Xiong J, Liu X et al (2009) Stereotaxical infusion of rotenone: a reliable rodent model for Parkinson’s disease. PLoS One 4:e7878. https://doi.org/10.1371/journal.pone.0007878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cannon JR, Tapias VM, Na HM, Honick AS, Drolet RE, Greennamyre JT (2009) A highly reproducible rotenone model of Parkinson’s disease. Neurobiol Dis 34:279–290. https://doi.org/10.1016/j.nbd.2009.01.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dodiya HB, Forsyth CB, Voigt RM, Engen PA, Patel J, Shaikh M et al (2020) Chronic stress-induced gut dysfunction exacerbates Parkinson’s disease phenotype and pathology in a rotenone-induced mouse model of Parkinson’s disease. Neurobol Dis 135:104352. https://doi.org/10.1016/j.nbd.2018.12.012

    Article  CAS  Google Scholar 

  38. Nehru B, Verma R, Khanna P, Sharma SK (2008) Behavioral alternations in rotenone model of Parkinson’s disease: attenuation by co-treatment of centrophenoxine. Brain Res 1201:122–127. https://doi.org/10.1016/j.brainres.2008.01.074

    Article  CAS  PubMed  Google Scholar 

  39. Maegawa H, Adachi N, Hanamoto H, Kudo C, Niwa H (2019) Bilateral Parkinson's disease model rats exhibit hyperalgesia to subcutaneous formalin administration into the vibrissa pad. PLoS One 14:e0225928. https://doi.org/10.1371/journal.pone.0225928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mercanti G, Bazzu G, Giusti P (2012) A 6-hydroxydopamine in vivo model of Parkinson’s disease. Methods Mol Biol 846:355–364. https://doi.org/10.1007/978-1-61779-536-7_30

    Article  CAS  PubMed  Google Scholar 

  41. Perese DA, Ulman J, Viola J, Ewing SE, Bankiewicz KS (1989) A 6-hydroxydopamine-induced selective parkinsonian rat model. Brain Res 494:285–293. https://doi.org/10.1016/0006-8993(89)90597-0

    Article  CAS  PubMed  Google Scholar 

  42. Przedborski S, Levivier M, Jiang H et al (1995) Dose-dependent lesions of the dopaminergic nigrostriatal pathway induced by intrastriatal injection of 6-hydroxydopamine. Neuroscience 67:631–647. https://doi.org/10.1016/0306-4522(95)00066-r

    Article  CAS  PubMed  Google Scholar 

  43. Jackson-Lewis V, Jakowec M, Burke RE, Przedborski S (1995) Time course and morphology of dopaminergic neuronal death caused by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Neurodegeneration 4:257–269. https://doi.org/10.1016/1055-8330(95)90015-2

    Article  CAS  PubMed  Google Scholar 

  44. Tatton NA, Kish SJ (1997) In situ detection of apoptotic nuclei in the substantia nigra compacta of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice using terminal deoxynucleotidyl transferase labelling and acridine orange staining. Neuroscience 77:1037–1048. https://doi.org/10.1016/s0306-4522(96)00545-3

    Article  CAS  PubMed  Google Scholar 

  45. Fornai F, Schlüter OM, Lenzi P, Gesi M, Ruffoli R, Ferrucci M et al (2005) Parkinson-like syndrome induced by continuous MPTP infusion: convergent roles of the ubiquitin-proteasome system and α-synuclein. Proc Natl Acad Sci U S A 102:3413–3418. https://doi.org/10.1073/pnas.0409713102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yang SC, Markey SP, Bankiewicz KS, London WT, Lunn G (1988) Recommended safe practices for using the neurotoxin MPTP in animal experiments. Lab Anim Sci 38:563–567

    CAS  PubMed  Google Scholar 

  47. Furuya T, Hayakawa H, Yamada M, Yoshimi K, Hisahara S, Miura M et al (2004) Caspase-11 mediates inflammatory dopaminergic cell death in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. J Neurosci 24:1865–1872. https://doi.org/10.1523/JNEUROSCI.3309-03.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Turmel H, Hartmann A, Parain K, Douhou A, Srinivasan A, Agid Y et al (2001) Caspase-3 activation in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) -treated mice. Mov Disord 16:185–189. https://doi.org/10.1002/mds.1037

    Article  CAS  PubMed  Google Scholar 

  49. Inden M, Kitamura Y, Takeuti H, Yanagida T, Takata K, Kobayashi Y et al (2007) Neurodegeneration of mouse nigrostriatal dopaminergic system induced by repeated oral administration of rotenone is prevented by 4-phenylbutyrate, a chemical chaperone. J Neurochem 101:1491–1504. https://doi.org/10.1111/j.1471-4159.2006.04440.x

    Article  CAS  PubMed  Google Scholar 

  50. Inden M, Kitamura Y, Abe M, Tamaki A, Takata K, Taniguchi T (2011) Parkinsonian rotenone mouse model: reevaluation of long-term administration of rotenone in C57BL/6 mice. Biol Pharm Bull 34:92–96. https://doi.org/10.1248/bpb.34.92

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroharu Maegawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Maegawa, H., Niwa, H. (2021). Generation of Mitochondrial Toxin Rodent Models of Parkinson’s Disease Using 6-OHDA , MPTP , and Rotenone. In: Imai, Y. (eds) Experimental Models of Parkinson’s Disease. Methods in Molecular Biology, vol 2322. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1495-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1495-2_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1494-5

  • Online ISBN: 978-1-0716-1495-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics