Skip to main content
Book cover

Sepsis pp 191–205Cite as

Detection of Blood Cell Surface Biomarkers in Septic Mice

  • Protocol
  • First Online:
  • 1636 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2321))

Abstract

Sepsis arises when an infection induces a dysregulated immune response, resulting in organ damage. New methods are urgently needed to diagnose patients in the early stages of sepsis, and identify patients with a poor disease prognosis. One promising approach is to identify the rapid changes in cell surface antigens (biomarkers) that occur during sepsis, as a consequence of leukocyte mobilization and activation. This chapter describes the method for staining whole blood with fluorescently conjugated antibodies that detect cell surface biomarkers, and performing flow cytometry analysis to quantify biomarker-positive cells. Our protocol is designed to detect blood cell surface biomarkers in septic mice, but could also be applied to study potential biomarkers in blood obtained from human patients with sepsis and other medical conditions.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Rohlwink UK, Figaji AA (2014) Biomarkers of brain injury in cerebral infections. Clin Chem 60:823–834

    Article  CAS  Google Scholar 

  2. Van Giau V, An SS (2016) Emergence of exosomal miRNAs as a diagnostic biomarker for Alzheimer's disease. J Neurol Sci 360:141–152

    Article  Google Scholar 

  3. Marrugo-Ramirez J, Mir M, Samitier J (2018) Blood-based cancer biomarkers in liquid biopsy: a promising non-invasive alternative to tissue biopsy. Int J Mol Sci 19:2877

    Article  Google Scholar 

  4. An M, Gao Y (2015) Urinary biomarkers of brain diseases. Genomics Proteomics Bioinformatics 13:345–354

    Article  Google Scholar 

  5. Kolaczkowska E, Kubes P (2013) Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol 13:159–175

    Article  CAS  Google Scholar 

  6. Shi C, Pamer EG (2011) Monocyte recruitment during infection and inflammation. Nat Rev Immunol 11:762–774

    Article  CAS  Google Scholar 

  7. Delano MJ, Ward PA (2016) The immune system's role in sepsis progression, resolution, and long-term outcome. Immunol Rev 274:330–353

    Article  CAS  Google Scholar 

  8. Ayala A, Chaudry IH (1996) Immune dysfunction in murine polymicrobial sepsis: mediators, macrophages, lymphocytes and apoptosis. Shock 6(Suppl 1):S27–S38

    Article  Google Scholar 

  9. Gentile LF, Cuenca AG, Efron PA et al (2012) Persistent inflammation and immunosuppression: a common syndrome and new horizon for surgical intensive care. J Trauma Acute Care Surg 72:1491–1501

    Article  CAS  Google Scholar 

  10. Ward NS, Casserly B, Ayala A (2008) The compensatory anti-inflammatory response syndrome (CARS) in critically ill patients. Clin Chest Med 29:617–625, viii

    Article  Google Scholar 

  11. Cid J, Aguinaco R, Sanchez R et al (2010) Neutrophil CD64 expression as marker of bacterial infection: a systematic review and meta-analysis. J Infect 60:313–319

    Article  Google Scholar 

  12. de Jong E, de Lange DW, Beishuizen A et al (2016) Neutrophil CD64 expression as a longitudinal biomarker for severe disease and acute infection in critically ill patients. Int J Lab Hematol 38:576–584

    Article  Google Scholar 

  13. Dimoula A, Pradier O, Kassengera Z et al (2014) Serial determinations of neutrophil CD64 expression for the diagnosis and monitoring of sepsis in critically ill patients. Clin Infect Dis 58:820–829

    Article  CAS  Google Scholar 

  14. Lam HS, Cheung HM, Poon TC et al (2013) Neutrophil CD64 for daily surveillance of systemic infection and necrotizing enterocolitis in preterm infants. Clin Chem 59:1753–1760

    Article  CAS  Google Scholar 

  15. Rogina P, Stubljar D, Lejko-Zupanc T et al (2015) Expression of CD64 on neutrophils (CD64 index): diagnostic accuracy of CD64 index to predict sepsis in critically ill patients. Clin Chem Lab Med 53:e89–e91

    Article  CAS  Google Scholar 

  16. Hirsh M, Mahamid E, Bashenko Y et al (2001) Overexpression of the high-affinity Fcgamma receptor (CD64) is associated with leukocyte dysfunction in sepsis. Shock 16:102–108

    Article  CAS  Google Scholar 

  17. Leng FY, Liu JL, Liu ZJ et al (2013) Increased proportion of CD4(+)CD25(+)Foxp3(+) regulatory T cells during early-stage sepsis in ICU patients. J Microbiol Immunol Infect 46:338–344

    Article  CAS  Google Scholar 

  18. Siqueira-Batista R, Gomes AP, Azevedo SF et al (2012) CD4+CD25+ T lymphocytes and regulation of the immune system: perspectives for a pathophysiological understanding of sepsis. Rev Bras Ter Intensiva 24:294–301

    Article  Google Scholar 

  19. Chen K, Zhou QX, Shan HW et al (2015) Prognostic value of CD4(+)CD25(+) Tregs as a valuable biomarker for patients with sepsis in ICU. World J Emerg Med 6:40–43

    Article  Google Scholar 

  20. Boomer JS, Shuherk-Shaffer J, Hotchkiss RS et al (2012) A prospective analysis of lymphocyte phenotype and function over the course of acute sepsis. Crit Care 16:R112

    Article  Google Scholar 

  21. Schwulst SJ, Muenzer JT, Chang KC et al (2008) Lymphocyte phenotyping to distinguish septic from nonseptic critical illness. J Am Coll Surg 206:335–342

    Article  Google Scholar 

  22. Zhang Y, Li W, Zhou Y et al (2017) Detection of sepsis in patient blood samples using CD64 expression in a microfluidic cell separation device. Analyst 143:241–249

    Article  Google Scholar 

  23. Zhang Y, Zhou Y, Li W et al (2018) Multiparameter affinity microchip for early sepsis diagnosis based on CD64 and CD69 expression and cell capture. Anal Chem 90:7204–7211

    Article  CAS  Google Scholar 

  24. Zhou Y, Zhang Y, Johnson A et al (2019) Combined CD25, CD64, and CD69 biomarker panel for flow cytometry diagnosis of sepsis. Talanta 191:216–221

    Article  CAS  Google Scholar 

  25. Zhou Y, Zhang Y, Johnson A et al (2019) Detection of culture-negative sepsis in clinical blood samples using a microfluidic assay for combined CD64 and CD69 cell capture. Anal Chim Acta 1062:110–117

    Article  CAS  Google Scholar 

  26. Spijkerman R, Hesselink L, Hellebrekers P et al (2019) Automated flow cytometry enables high performance point-of-care analysis of leukocyte phenotypes. J Immunol Methods 474:112646

    Article  CAS  Google Scholar 

  27. Diks AM, Bonroy C, Teodosio C et al (2019) Impact of blood storage and sample handling on quality of high dimensional flow cytometric data in multicenter clinical research. J Immunol Methods 475:112616

    Article  CAS  Google Scholar 

  28. Heipertz EL, Harper J, Goswami DG et al (2021) IRF3 signaling within the mouse stroma influences sepsis pathogenesis. J Immunol 206(2):398–409

    Article  CAS  Google Scholar 

  29. Heipertz EL, Harper J, Lopez CA et al (2018) Circadian rhythms influence the severity of sepsis in mice via a TLR2-dependent, leukocyte-intrinsic mechanism. J Immunol 201(1):193–201

    Article  CAS  Google Scholar 

  30. Heipertz EL, Harper J, Walker WE (2017) STING and TRIF contribute to mouse sepsis, depending on severity of the disease model. Shock 47:621–631

    Article  CAS  Google Scholar 

  31. Walker WE, Bozzi AT, Goldstein DR (2012) IRF3 contributes to sepsis pathogenesis in the mouse cecal ligation and puncture model. J Leukoc Biol 92:1261–1268

    Article  CAS  Google Scholar 

  32. Goswami DG, Garcia LF, Dodoo C et al (2021) Evaluating the timeliness and specificity of CD69, CD64 and CD25 as biomarkers of sepsis in MICE. Shock 55:507–518

    Google Scholar 

  33. Walker WE (2018) Methods to study the innate immune response to sepsis. Tharakan B in: traumatic and ischemic injury: methods and protocols. Springer New York, New York, NY, pp 189–206

    Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the Society of Critical Care Medicine (SCCM) and startup funds from Texas Tech University Health Sciences Center at El Paso, awarded to Wendy Walker.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wendy E. Walker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Goswami, D.G., Walker, W.E. (2021). Detection of Blood Cell Surface Biomarkers in Septic Mice. In: Walker, W.E. (eds) Sepsis. Methods in Molecular Biology, vol 2321. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1488-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1488-4_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1487-7

  • Online ISBN: 978-1-0716-1488-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics