Skip to main content

Plastid Transformation in Physcomitrium (Physcomitrella) patens: An Update

  • Protocol
  • First Online:
Chloroplast Biotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2317))

Abstract

The moss Physcomitrium (Physcomitrella) patens performs efficient homologous recombination in both the nucleus and plastid enabling the study of individual gene function by generating precise inactivation or modification of genes. Polyethylene glycol (PEG)-mediated transformation of protoplasts is routinely used to study the nuclear gene function of P. patens. PEG-mediated protoplast transformation is also applied for plastid transformation of this moss. The efficiency of plastid transformation is quite reliable and one or two homoplasmic transplastomic lines are obtained in a plastid transformation experiment (5 × 105 protoplasts) by selection for spectinomycin resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schaefer D, Zryd J-P (1997) Efficient gene targeting in the moss Physcomitrella patens. Plant J 11:1195–1206

    Article  CAS  Google Scholar 

  2. Schaefer DG (2001) Gene targeting in Physcomitrella patens. Curr Opin Plant Biol 4:143–150

    Article  CAS  Google Scholar 

  3. Cove D (2005) The moss Physcomitrella patens. Annu Rev Genet 39:339–358

    Article  CAS  Google Scholar 

  4. Cove D, Bezanilla M, Harries P, Quatrano R (2006) Mosses as model systems for the study of metabolism and development. Annu Rev Plant Biol 57:497–520

    Article  CAS  Google Scholar 

  5. Decker EL, Reski R (2004) The moss bioreactor. Curr Opin Plant Biol 7:166–170

    Article  CAS  Google Scholar 

  6. Cho SH, Chung YS, Cho SK, Rim YW, Shin JS (1999) Particle bombardment mediated transformation and GFP expression in the moss Physcomitrella patens. Mol Cells 9:14–19

    CAS  PubMed  Google Scholar 

  7. Sugiura C, Kobayashi Y, Aoki S, Sugita C, Sugita M (2003) Complete chloroplast DNA sequence of the moss Physcomitrella patens: evidence for the loss and relocation of rpoA from the chloroplast to the nucleus. Nucleic Acids Res 31:5324–5331

    Article  CAS  Google Scholar 

  8. Sugiura C, Sugita M (2004) Plastid transformation reveals that moss tRNAArg-CCG is not essential for plastid function. Plant J 40:314–321

    Article  CAS  Google Scholar 

  9. Ashton NW, Cove DJ (1977) The isolation and preliminary characterisation of auxotrophic and analogue resistant mutants in the moss Physcomitrella patens. Mol Gen Genet 154:87–95

    Article  Google Scholar 

  10. Reski R, Abel WQ (1985) Induction of budding on chloronemata and caulonemata of the moss, Physcomitrella patens, using isopentenyladenine. Planta 165:354–358

    Article  CAS  Google Scholar 

  11. Svab Z, Maliga P (1993) High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc Natl Acad Sci U S A 87:8526–8530

    Article  Google Scholar 

  12. Schween G, Fleig S, Reski R (2002) High-throughput-PCR screen of 15,000 transgenic Physcomitrella plants. Plant Mol Biol Rep 20:43–47

    Article  CAS  Google Scholar 

  13. Murray JM, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    Article  CAS  Google Scholar 

  14. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  15. Ashton NW, Champagne CEM, Weiler T, Verkoczy LK (2000) The bryophyte Physcomitrella patens replicates extrachromosomal transgenic elements. New Phytol 146:391–402

    Article  Google Scholar 

  16. Bezanilla M, Pan A, Quatrno RS (2003) RNA interference in the moss Physcomitrella patens. Plant Physiol 133:470–474

    Article  CAS  Google Scholar 

  17. Tasaki E, Hattori M, Sugita M (2010) The moss pentatricopeptide repeat protein with a DYW domain is responsible for RNA editing of mitochondrial ccmFc transcript. Plant J 62:560–570

    Article  CAS  Google Scholar 

  18. Šmídková M, Holá M, Angelis KJ (2010) Efficient biolistic transformation of the moss Physcomitrella patens. Biol Plant 54:777–780

    Article  Google Scholar 

  19. The International Moss Stock Center (IMSC Freiburg) http://www.moss-stock-center.org/

  20. Home page of plant biotechnology (Prof. Dr. Ralf Reski lab.) The Freiburg standard methods for Physcomitrella patens cell culture, protoplastation and transformation. http://www.plant-biotech.net/

  21. NIBB PHYSCObase (Prof. Dr. Mitsuyasu Hasebe lab.), PHYSCOmanual ver.2.0: http://moss.nibb.ac.jp/

Download references

Acknowledgments

The author would like to thank Ms. Chika Sugiura-Miyamoto for development of plastid transformation of P. patens. This work was supported by in part by a Grant-in-Aid from the Japan Society for the Promotion of Science (14340252).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mamoru Sugita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sugita, M. (2021). Plastid Transformation in Physcomitrium (Physcomitrella) patens: An Update. In: Maliga, P. (eds) Chloroplast Biotechnology. Methods in Molecular Biology, vol 2317. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1472-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1472-3_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1471-6

  • Online ISBN: 978-1-0716-1472-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics