Skip to main content

AgDD System: A Chemical Controllable Protein Aggregates in Cells

  • Protocol
  • First Online:
Mammalian Cell Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2312))

  • 1823 Accesses

Abstract

There are increasing evidence and growing interest in the relationship between protein aggregates/phase separation and various human diseases, especially neurodegenerative diseases. However, we do not entirely comprehend how aggregates generate or the clearance network of chaperones, proteasomes, ubiquitin ligases, and other factors interact with aggregates. Here, we describe chemically controllable systems compose with a genetically engineered cell and a small drug that enables us to rapidly induce protein aggregates’ formation by withdrawing the small molecule. This trigger does not activate global stress responses induced by stimuli, such as proteasome inhibitors or heat shock. This method can produce aggregates in a specific compartment and diverse experimental systems, including live animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Powers ET, Morimoto RI, Dillin A, Kelly JW, Balch WE (2009) Biological and chemical approaches to diseases of proteostasis deficiency. Annu Rev Biochem 78:959–991

    Article  CAS  Google Scholar 

  2. Douglas PM, Dillin A (2010) Protein homeostasis and aging in neurodegeneration. J Cell Biol 190(5):719–729

    Article  CAS  Google Scholar 

  3. Morimoto RI (2011) The heat shock response: systems biology of proteotoxic stress in aging and disease. Cold Spring Harb Symp Quant Biol 76:91–99

    Article  CAS  Google Scholar 

  4. Dubnikov T, Ben-Gedalya T, Cohen E (2017) Protein quality control in health and disease. Cold Spring Harb Perspect Biol 9(3):a023523

    Article  Google Scholar 

  5. Tyedmers J, Mogk A, Bukau B (2010) Cellular strategies for controlling protein aggregation. Nat Rev Mol Cell Biol 11(11):777–788

    Article  CAS  Google Scholar 

  6. Chen B, Retzlaff M, Roos T, Frydman J (2011) Cellular strategies of protein quality control. Cold Spring Harb Perspect Biol 3:a004374

    Article  Google Scholar 

  7. Kisselev AF, Goldberg AL (2001) Proteasome inhibitors: from research tools to drug candidates. Chem Biol 8:739–758

    Article  CAS  Google Scholar 

  8. Kawaguchi Y, Kovacs JJ, Mclaurin A, Vance JM, Ito A, Yao TP (2003) The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell 115:727–738

    Article  CAS  Google Scholar 

  9. Szeto J, Kaniuk NA, Canadien V, Nisman R, Muzushima N, Yoshimori T, Bazett-Jones DP, Brumell JH (2006) ALIS are stress-induced protein storage compartments for substrates of the proteasome and autophagy. Autophagy 2:189–199

    Article  CAS  Google Scholar 

  10. Miller SB, Ho CT, Winkler J, Khokhrina M, Neuner A, Mohamed MY, Guilbride DL, Richter K, Lisby M, Schiebel E, Mogk A, Bukau B (2015) Compartment-specific aggregases direct distinct nuclear and cytoplasmic aggregate deposition. EMBO J 34:778–797

    Article  CAS  Google Scholar 

  11. Bush KT, Goldberg AL, Nigam SK (1997) Proteasome inhibition leads to a heat-shock response, induction of endoplasmic reticulum chaperones, and thermotolerance. J Biol Chem 272:9086–9092

    Article  CAS  Google Scholar 

  12. Lee DH, Goldberg AL (1998) Proteasome inhibitors cause induction of heat shock proteins and trehalose, which together confer thermotolerance in Saccharomyces cerevisiae. Mol Cell Biol 18:30–38

    Article  CAS  Google Scholar 

  13. Kaganovich D, Kopito R, Frydman J (2008) Misfolded proteins partition between two distinct quality control compartments. Nature 454:1088–1095

    Article  CAS  Google Scholar 

  14. Bersuker K, Hipp MS, Calamini B, Morimoto RI, Kopito RR (2013) Heat shock response activation exacerbates inclusion body formation in a cellular model of huntington disease. J Biol Chem 288(33):23633–23638

    Article  CAS  Google Scholar 

  15. Yu A, Shibata Y, Shah B, Calamini B, Lo DC, Morimoto RI (2014) Protein aggregation can inhibit clathrin-mediated endocytosis by chaperone competition. Proc Natl Acad Sci U S A 111:E1481–E1490

    Article  CAS  Google Scholar 

  16. Banaszynski LA, Chen LC, Maynard-Smith LA, Ooi AG, Wandless TJ (2006) A rapid, reversible, and tunable method to regulate protein function in living cells using synthetic small molecules. Cell 126(5):995–1004

    Article  CAS  Google Scholar 

  17. Iwamoto M, Björklund T, Lundberg C, Kirik D, Wandless TJ (2010) A general chemical method to regulate protein stability in the mammalian central nervous system. Chem Biol 17(9):981–988

    Article  CAS  Google Scholar 

  18. Miyazaki Y, Imoto H, Chen LC, Wandless TJ (2012) Destabilizing domains derived from the human estrogen receptor. J Am Chem Soc 134(9):3942–3945

    Article  CAS  Google Scholar 

  19. Maynard-Smith LA, Chen LC, Banaszynski LA, Ooi AG, Wandless TJ (2007) A directed approach for engineering conditional protein stability using biologically silent small molecules. J Biol Chem 282(34):24866–24872

    Article  CAS  Google Scholar 

  20. Knowles TPJ, Vendruscolo M, Dobson CM (2014) The amyloid state and its association with protein misfolding diseases. Nat Rev Mol Cell Biol 15:384–396

    Article  CAS  Google Scholar 

  21. Nakamura H, DeRose R, Inoue T (2019) Harnessing biomolecular condensates in living cells. J Biochem 166(1):13–27

    Article  CAS  Google Scholar 

  22. Miyazaki Y, Mizumoto K, Dey G, Kudo T, Perrino J, Chen LC, Meyer T, Wandless TJ (2016) A method to rapidly create protein aggregates in living cells. Nat Commun 7:11689

    Article  CAS  Google Scholar 

  23. Egeler EL, Urner LM, Rakhit R, Liu CW, Wandless TJ (2011) Ligand-switchable substrates for a ubiquitin-proteasome system. J Biol Chem 286:31328–31336

    Article  CAS  Google Scholar 

  24. Grimley JS, Chen DA, Banaszynski LA, Wandless TJ (2008) Synthesis and analysis of stabilizing ligands for FKBP-derived destabilizing domains. Bioorg Med Chem Lett 18:759–761

    Article  CAS  Google Scholar 

  25. Ramdzan YM, Polling S, Chia CPZ, Ng IHW, Ormsby AR, Croft NP, Purcell AW, Bogoyevitch MA, Ng DCH, Gleeson PA, Hatters DM (2012) Tracking protein aggregation and mislocalization in cells with flow cytometry. Nat Methods 9:467–470

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the NIH (GM073046 and P50 GM107615), the Ellison Medical Foundation (AG-SS-2573-10), and the Stanford Discovery Innovation Fund. Y.M. was supported by the Nakajima Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuke Miyazaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Miyazaki, Y. (2021). AgDD System: A Chemical Controllable Protein Aggregates in Cells. In: Kojima, R. (eds) Mammalian Cell Engineering. Methods in Molecular Biology, vol 2312. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1441-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1441-9_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1440-2

  • Online ISBN: 978-1-0716-1441-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics