Skip to main content

Methods to Analyze the Effect of Diet-Derived Metabolites on Endothelial Inflammation and Cell Surface Glycosaminoglycans

  • Protocol
  • First Online:
Glycosaminoglycans

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2303))

Abstract

The glycocalyx is a biologically active barrier that covers the luminal side of the vascular endothelium and it is comprised of proteoglycans [core proteins with glycosaminoglycans (GAG) side chains], glycoproteins, and plasma proteins. Evidence shows that the disruption in the structure and function of the endothelial glycocalyx exacerbates vascular inflammation and atherosclerosis. The GAG components of the glycocalyx undergo remodeling in the setting of diabetes and these alterations in endothelial GAGs negatively impact the vascular function. Hence, the preservation and restoration of GAGs in altered vasculature may be a novel strategy to ameliorate vascular complications in diabetes and metabolic syndrome. Human studies support the beneficial vascular effects of flavonoids which are widely found in fruits and vegetables. Flavonoids are extensively metabolized by the intestinal microbiota and digestive enzymes in humans, suggesting that their biological activities may be mediated by their circulating metabolites. Studies indicate that counteracting the damage to GAGs using dietary compounds improve vascular complications. In this article, we describe the methods to analyze the effect of diet-derived metabolites such as metabolites of flavonoids on endothelial inflammation and cell surface glycosaminoglycans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kolsen-Petersen JA (2015) The endothelial glycocalyx: the great luminal barrier. Acta Anaesthesiol Scand 59(2):137–139

    Article  CAS  Google Scholar 

  2. Kolarova H et al (2014) Modulation of endothelial glycocalyx structure under inflammatory conditions. Mediators Inflamm 2014:694312

    Article  Google Scholar 

  3. Becker BF et al (2015) Degradation of the endothelial glycocalyx in clinical settings: searching for the sheddases. Br J Clin Pharmacol 80(3):389–402

    Article  CAS  Google Scholar 

  4. Broekhuizen LN et al (2010) Effect of sulodexide on endothelial glycocalyx and vascular permeability in patients with type 2 diabetes mellitus. Diabetologia 53(12):2646–2655

    Article  CAS  Google Scholar 

  5. Gowd V, Gurukar A, Chilkunda ND (2016) Glycosaminoglycan remodeling during diabetes and the role of dietary factors in their modulation. World J Diabetes 7(4):67–73

    Article  Google Scholar 

  6. Wasty F, Alavi MZ, Moore S (1993) Distribution of glycosaminoglycans in the intima of human aortas: changes in atherosclerosis and diabetes mellitus. Diabetologia 36(4):316–322

    Article  CAS  Google Scholar 

  7. Mooij HL et al (2014) Loss of function in heparan sulfate elongation genes EXT1 and EXT 2 results in improved nitric oxide bioavailability and endothelial function. J Am Heart Assoc 3(6):e001274

    Article  CAS  Google Scholar 

  8. Babu P et al (2011) Hydrogen/deuterium exchange-LC-MS approach to characterize the action of heparan sulfate C5-epimerase. Anal Bioanal Chem 401(1):237–244

    Article  CAS  Google Scholar 

  9. Han J, Hiebert LM (2014) Reprint of “Alteration of endothelial proteoglycan and heparanase gene expression by high glucose, insulin and heparin”. Vasc Pharmacol 59(3–4):112–118

    Google Scholar 

  10. Hiebert LM, Han J, Mandal AK (2014) Glycosaminoglycans, hyperglycemia, and disease. Antioxid Redox Signal 21(7):1032–1043

    Article  CAS  Google Scholar 

  11. Wang F et al (2009) Endothelial heparanase secretion after acute hypoinsulinemia is regulated by glucose and fatty acid. Am J Physiol Heart Circ Physiol 296(4):H1108–H1116

    Article  CAS  Google Scholar 

  12. Wang F et al (2012) Fatty acid-induced nuclear translocation of heparanase uncouples glucose metabolism in endothelial cells. Arterioscler Thromb Vasc Biol 32(2):406–414

    Article  Google Scholar 

  13. Vikramadithyan RK et al (2004) Atherosclerosis in perlecan heterozygous mice. J Lipid Res 45(10):1806–1812

    Article  CAS  Google Scholar 

  14. Tran-Lundmark K et al (2008) Heparan sulfate in perlecan promotes mouse atherosclerosis: roles in lipid permeability, lipid retention, and smooth muscle cell proliferation. Circ Res 103(1):43–52

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Rodriguez-Mateos A et al (2013) Intake and time dependence of blueberry flavonoid-induced improvements in vascular function: a randomized, controlled, double-blind, crossover intervention study with mechanistic insights into biological activity. Am J Clin Nutr 98(5):1179–1191

    Article  CAS  Google Scholar 

  16. Cassidy A et al (2013) High anthocyanin intake is associated with a reduced risk of myocardial infarction in young and middle-aged women. Circulation 127(2):188–196

    Article  CAS  Google Scholar 

  17. Basu A et al (2010) Blueberries decrease cardiovascular risk factors in obese men and women with metabolic syndrome. J Nutr 140(9):1582–1587

    Article  CAS  Google Scholar 

  18. Rodriguez-Mateos A et al (2014) Impact of processing on the bioavailability and vascular effects of blueberry (poly)phenols. Mol Nutr Food Res 58(10):1952–1961

    Article  CAS  Google Scholar 

  19. Johnson SA et al (2015) Daily blueberry consumption improves blood pressure and arterial stiffness in postmenopausal women with pre- and stage 1-hypertension: a randomized, double-blind, placebo-controlled clinical trial. J Acad Nutr Diet 115(3):369–377

    Article  Google Scholar 

  20. Del Bo C et al (2017) A serving of blueberry (V. corymbosum) acutely improves peripheral arterial dysfunction in young smokers and non-smokers: two randomized, controlled, crossover pilot studies. Food Funct 8(11):4108–4117

    Article  Google Scholar 

  21. Kalea AZ et al (2006) Wild blueberry (Vaccinium angustifolium) consumption affects the composition and structure of glycosaminoglycans in Sprague-Dawley rat aorta. J Nutr Biochem 17(2):109–116

    Article  CAS  Google Scholar 

  22. Kristo AS et al (2012) Wild blueberry (V. angustifolium)-enriched diets alter aortic glycosaminoglycan profile in the spontaneously hypertensive rat. J Nutr Biochem 23(8):961–965

    Article  CAS  Google Scholar 

  23. de Ferrars RM et al (2014) The pharmacokinetics of anthocyanins and their metabolites in humans. Br J Pharmacol 171(13):3268–3282

    Article  Google Scholar 

  24. de Ferrars RM et al (2014) Phenolic metabolites of anthocyanins following a dietary intervention study in post-menopausal women. Mol Nutr Food Res 58(3):490–502

    Article  CAS  Google Scholar 

  25. Bharat D et al (2018) Blueberry metabolites attenuate lipotoxicity-induced endothelial dysfunction. Mol Nutr Food Res 62(2):1700601

    Article  Google Scholar 

  26. Cutler B et al (2018) Blueberry metabolites restore cell surface glycosaminoglycans and attenuate endothelial inflammation in diabetic human aortic endothelial cells. Int J Cardiol 261:155–158

    Article  Google Scholar 

  27. Zeng Y, Tarbell JM (2014) The adaptive remodeling of endothelial glycocalyx in response to fluid shear stress. PLoS One 9(1):e86249

    Article  Google Scholar 

  28. Koo A, Dewey CF Jr, Garcia-Cardena G (2013) Hemodynamic shear stress characteristic of atherosclerosis-resistant regions promotes glycocalyx formation in cultured endothelial cells. Am J Physiol Cell Physiol 304(2):C137–C146

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institute of Health (R01AT010247) and National Institute of Foods and Agriculture (2019-67017-29253) grants (to P.V.A.B.); Undergraduate Research Opportunities Program award (to B.R.C.); and NHLBI sponsored Programs of Excellence in Glycosciences Grant, HL107152 (to K.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pon Velayutham Anandh Babu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cutler, B.R., Chua, J.S., Balagurunathan, K., Anandh Babu, P.V. (2022). Methods to Analyze the Effect of Diet-Derived Metabolites on Endothelial Inflammation and Cell Surface Glycosaminoglycans. In: Balagurunathan, K., Nakato, H., Desai, U., Saijoh, Y. (eds) Glycosaminoglycans. Methods in Molecular Biology, vol 2303. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1398-6_37

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1398-6_37

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1397-9

  • Online ISBN: 978-1-0716-1398-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics