Skip to main content

Methods for the Differential Analysis of Hi-C Data

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2301))

Abstract

The 3D organization of chromatin within the nucleus enables dynamic regulation and cell type-specific transcription of the genome. This is true at multiple levels of resolution: on a large scale, with chromosomes occupying distinct volumes (chromosome territories); at the level of individual chromatin fibers, which are organized into compartmentalized domains (e.g., Topologically Associating Domains—TADs), and at the level of short-range chromatin interactions between functional elements of the genome (e.g., enhancer-promoter loops).

The widespread availability of Chromosome Conformation Capture (3C)-based high-throughput techniques has been instrumental in advancing our knowledge of chromatin nuclear organization. In particular, Hi-C has the potential to achieve the most comprehensive characterization of chromatin 3D interactions, as it is theoretically able to detect any pair of restriction fragments connected as a result of ligation by proximity.

This chapter will illustrate how to compare the chromatin interactome in different experimental conditions, starting from pre-computed Hi-C contact matrices, how to visualize the results, and how to correlate the observed variations in chromatin interaction strength with changes in gene expression.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Nuebler J, Fudenberg G, Imakaev M, Abdennur N, Mirny LA (2018) Chromatin organization by an interplay of loop extrusion and compartmental segregation. Proc Natl Acad Sci U S A 115(29):E6697–E6706. https://doi.org/10.1073/pnas.1717730115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rada-Iglesias A, Grosveld FG, Papantonis A (2018) Forces driving the three-dimensional folding of eukaryotic genomes. Mol Syst Biol 14(6):e8214. https://doi.org/10.15252/msb.20188214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rowley MJ, Nichols MH, Lyu X, Ando-Kuri M, Rivera ISM, Hermetz K, Wang P, Ruan Y, Corces VG (2017) Evolutionarily conserved principles predict 3D chromatin organization. Mol Cell 67:837–852.e7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Engreitz JM, Ollikainen N, Guttman M (2016) Long non-coding RNAs: spatial amplifiers that control nuclear structure and gene expression. Nat Rev Mol Cell Biol 17(12):756–770. https://doi.org/10.1038/nrm.2016.126

    Article  CAS  PubMed  Google Scholar 

  5. Nora EP, Lajoie B, Schulz EG, Giorgetti L, Okamoto I, Servant N, Piolot T, van Berkum NL, Meisig J, Sedat J et al (2012) Spatial partitioning of the regulatory landscape of the X-inactivation center. Nature 485:381–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, Hu M, Liu JS, Ren B (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485(7398):376–380. https://doi.org/10.1038/nature11082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hnisz D, Shrinivas K, Young RA, Chakraborty AK, Sharp PA (2017) A phase separation model for transcriptional control. Cell 169(1):13–23. https://doi.org/10.1016/j.cell.2017.02.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bonev B, Cavalli G (2016) Organization and function of the 3D genome. Nat Rev Genet 17(11):661–678. https://doi.org/10.1038/nrg.2016.112

    Article  CAS  PubMed  Google Scholar 

  9. Caputo L, Witzel HR, Kolovos P, Cheedipudi S, Looso M, Mylona A, van IJcken WF, Laugwitz KL, Evans SM, Braun T, Soler E, Grosveld F, Dobreva G (2015) The Isl1/Ldb1 complex orchestrates genome-wide chromatin organization to instruct differentiation of multipotent cardiac progenitors. Cell Stem Cell 17(3):287–299. https://doi.org/10.1016/j.stem.2015.08.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hug CB, Vaquerizas JM (2018) The birth of the 3D genome during early embryonic development. Trends Genet 34(12):903–914. https://doi.org/10.1016/j.tig.2018.09.002

    Article  CAS  PubMed  Google Scholar 

  11. Dall’Agnese A, Caputo L, Nicoletti C, di Iulio J, Schmitt A, Gatto S, Diao Y, Ye Z, Forcato M, Perera R, Bicciato S, Telenti A, Ren B, Puri PL (2019) Transcription factor-directed re-wiring of chromatin architecture for somatic cell nuclear reprogramming toward trans-differentiation. Mol Cell 76(3):453–472.e8. https://doi.org/10.1016/j.molcel.2019.07.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Di Giammartino DC, Kloetgen A, Polyzos A, Liu Y, Kim D, Murphy D, Abuhashem A, Cavaliere P, Aronson B, Shah V, Dephoure N, Stadtfeld M, Tsirigos A, Apostolou E (2019) KLF4 is involved in the organization and regulation of pluripotency-associated three-dimensional enhancer networks. Nat Cell Biol 21(10):1179–1190. https://doi.org/10.1038/s41556-019-0390-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lupiáñez DG, Kraft K, Heinrich V, Krawitz P, Brancati F, Klopocki E, Horn D, Kayserili H, Opitz JM, Laxova R et al (2015) Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell 161:1012–1025

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lupiáñez DG, Spielmann M, Mundlos S (2016) Breaking TADs: how alterations of chromatin domains result in disease. Trends Genet 32:225–237

    Article  PubMed  Google Scholar 

  15. Valton AL, Dekker J (2016) TAD disruption as oncogenic driver. Curr Opin Genet Dev 36:34–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rao SSP, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, Sanborn AL, Machol I, Omer AD, Lander ES et al (2014) A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159:1665–1680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nagano T, Lubling Y, Várnai C, Dudley C, Leung W, Baran Y, Mendelson Cohen N, Wingett S, Fraser P, Tanay A (2017) Cell-cycle dynamics of chromosomal organization at single-cell resolution. Nature 547:61–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xu Z, Dixon JR (2019) Genome reconstruction and haplotype phasing using chromosome conformation capture methodologies. Brief Funct Genomics 19(2):139–150. https://doi.org/10.1093/bfgp/elz026

    Article  CAS  PubMed Central  Google Scholar 

  19. Dudchenko O, Batra SS, Omer AD, Nyquist SK, Hoeger M, Durand NC, Shamim MS, Machol I, Lander ES, Aiden AP, Aiden EL (2017) De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356(6333):92–95. https://doi.org/10.1126/science.aal3327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ay F, Noble WS (2015) Analysis methods for studying the 3D architecture of the genome. Genome Biol 16:183. https://doi.org/10.1186/s13059-015-0745-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schmitt AD, Hu M, Ren B (2016) Genome-wide mapping and analysis of chromosome architecture. Nat Rev Mol Cell Biol 17:743–755. https://doi.org/10.1038/nrm.2016.104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nicoletti C, Forcato M, Bicciato S (2018) Computational methods for analyzing genome-wide chromosome conformation capture data. Curr Opin Biotechnol 54:98–105. https://doi.org/10.1016/j.copbio.2018.01.023

    Article  CAS  PubMed  Google Scholar 

  23. Forcato M, Nicoletti C, Pal K et al (2017) Comparison of computational methods for Hi-C data analysis. Nat Methods 14:679–685. https://doi.org/10.1038/nmeth.4325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dali R, Blanchette M (2017) A critical assessment of topologically associating domain prediction tools. Nucleic Acids Res 45(6):2994–3005. https://doi.org/10.1093/nar/gkx145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Servant N, Varoquaux N, Lajoie BR et al (2015) HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol 16:259. https://doi.org/10.1186/s13059-015-0831-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Durand NC, Shamim MS, Machol I, Rao SS, Huntley MH, Lander ES, Aiden EL (2016) Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst 3(1):95–98. https://doi.org/10.1016/j.cels.2016.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9(4):357–359. https://doi.org/10.1038/nmeth.1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Imakaev M, Fudenberg G, McCord RP, Naumova N, Goloborodko A, Lajoie BR, Dekker J, Mirny LA (2012) Iterative correction of Hi-C data reveals hallmarks of chromosome organization. Nat Methods 9(10):999–1003. https://doi.org/10.1038/nmeth.2148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Durand NC, Robinson JT, Shamim MS, Machol I, Mesirov JP, Lander ES, Aiden EL (2016) Juicebox provides a visualization system for Hi-C contact maps with unlimited zoom. Cell Syst 3(1):99–101. https://doi.org/10.1016/j.cels.2015.07.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Robinson JT, Turner D, Durand NC, Thorvaldsdóttir H, Mesirov JP, Aiden EL (2018) Juicebox.js provides a cloud-based visualization system for Hi-C data. Cell Syst 6(2):256–258.e1. https://doi.org/10.1016/j.cels.2018.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kerpedjiev P, Abdennur N, Lekschas F, McCallum C, Dinkla K, Strobelt H, Luber JM, Ouellette SB, Azhir A, Kumar N, Hwang J, Lee S, Alver BH, Pfister H, Mirny LA, Park PJ, Gehlenborg N (2018) HiGlass: web-based visual exploration and analysis of genome interaction maps. Genome Biol 19(1):125. https://doi.org/10.1186/s13059-018-1486-1.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25(14):1754–1760. https://doi.org/10.1093/bioinformatics/btp324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang Y, Li T, Preissl S, Amaral ML, Grinstein JD, Farah EN, Destici E, Qiu Y, Hu R, Lee AY, Chee S, Ma K, Ye Z, Zhu Q, Huang H, Fang R, Yu L, Izpisua Belmonte JC, Wu J, Evans SM, Chi NC, Ren B (2019) Transcriptionally active HERV-H retrotransposons demarcate topologically associating domains in human pluripotent stem cells. Nat Genet 51(9):1380–1388. https://doi.org/10.1038/s41588-019-0479-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ramírez F, Bhardwaj V, Arrigoni L, Lam KC, Grüning BA, Villaveces J, Habermann B, Akhtar A, Manke T (2018) High-resolution TADs reveal DNA sequences underlying genome organization in flies. Nat Commun 9(1):189. https://doi.org/10.1038/s41467-017-02525-w.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wolff J, Bhardwaj V, Nothjunge S, Richard G, Renschler G, Gilsbach R, Manke T, Backofen R, Ramírez F, Grüning BA (2018) Galaxy HiCExplorer: a web server for reproducible Hi-C data analysis, quality control and visualization. Nucleic Acids Res 46(W1):W11–W16. https://doi.org/10.1093/nar/gky504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ardakany AR, Ay F, Lonardi S (2019) Selfish: discovery of differential chromatin interactions via a self-similarity measure. Bioinformatics 35(14):i145–i153. https://doi.org/10.1093/bioinformatics/btz362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lun AT, Smyth GK (2015) diffHic: a bioconductor package to detect differential genomic interactions in Hi-C data. BMC Bioinform 16:258. https://doi.org/10.1186/s12859-015-0683-0

    Article  CAS  Google Scholar 

  38. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140. https://doi.org/10.1093/bioinformatics/btp616

    Article  CAS  PubMed  Google Scholar 

  39. Lun AT, Perry M, Ing-Simmons E (2016) Infrastructure for genomic interactions: bioconductor classes for Hi-C, ChIA-PET and related experiments. F1000Res 5:950. https://doi.org/10.12688/f1000research.8759.2

    Article  PubMed  PubMed Central  Google Scholar 

  40. Stansfield JC, Cresswell KG, Dozmorov MG (2019) multiHiCcompare: joint normalization and comparative analysis of complex Hi-C experiments. Bioinformatics 35(17):2916–2923. https://doi.org/10.1093/bioinformatics/btz048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Stansfield JC, Cresswell KG, Vladimirov VI, Dozmorov MG (2018) HiCcompare: an R-package for joint normalization and comparison of HI-C datasets. BMC Bioinform 19(1):279. https://doi.org/10.1186/s12859-018-2288-x

    Article  CAS  Google Scholar 

  42. Ballman KV, Grill DE, Oberg AL, Therneau TM (2004) Faster cyclic loess: normalizing RNA arrays via linear models. Bioinformatics 20(16):2778–2786. https://doi.org/10.1093/bioinformatics/bth327

    Article  CAS  PubMed  Google Scholar 

  43. Yardımcı GG, Noble WS (2017) Software tools for visualizing Hi-C data. Genome Biol 18(1):26. https://doi.org/10.1186/s13059-017-1161-y

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zhu LJ, Gazin C, Lawson ND, Pagès H, Lin SM, Lapointe DS, Green MR (2010) ChIPpeakAnno: a bioconductor package to annotate ChIP-seq and ChIP-chip data. BMC Bioinform 11:237. https://doi.org/10.1186/1471-2105-11-237

    Article  CAS  Google Scholar 

  45. Djekidel MN, Chen Y, Zhang MQ (2018) FIND: difFerential chromatin INteractions detection using a spatial Poisson process. Genome Res 28(3):412–422. https://doi.org/10.1101/gr.212241.116

    Article  CAS  PubMed Central  Google Scholar 

  46. Stansfield JC, Tran D, Nguyen T, Dozmorov MG (2019) R tutorial: detection of differentially interacting chromatin regions from multiple Hi-C datasets. Curr Protoc Bioinformatics 66(1):e76. https://doi.org/10.1002/cpbi.76.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the American Heart Association Postdoctoral Fellowship 19POST34450187 to C.N. I thank Silvio Bicciato for providing the computational resources to run the analyses described in the chapter and Silvio Bicciato, Pier Lorenzo Puri, and Luca Caputo for critical feedback on the manuscript. Last but not least, I want to express my gratitude to my parents, for supporting me in everything I do.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiara Nicoletti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nicoletti, C. (2022). Methods for the Differential Analysis of Hi-C Data. In: Bicciato, S., Ferrari, F. (eds) Hi-C Data Analysis. Methods in Molecular Biology, vol 2301. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1390-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1390-0_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1389-4

  • Online ISBN: 978-1-0716-1390-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics