Skip to main content

Quantitative Analysis of Myofibroblast Contraction by Traction Force Microscopy

  • Protocol
  • First Online:
Myofibroblasts

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2299))

  • 4429 Accesses

Abstract

Myofibroblasts play important roles in physiological processes such as wound healing and tissue repair. While high contractile forces generated by the actomyosin network enable myofibroblasts to physically contract the wound and bring together injured tissue, prolonged and elevated levels of contraction also drive the progression of fibrosis and cancer. However, quantitative mapping of these forces has been difficult due to their extremely low magnitude ranging from 100 pN/μm2 to 2 nN/μm2. Here, we provide a protocol to measure cellular forces exerted on two-dimensional compliant elastic hydrogels. We describe the fabrication of polyacrylamide hydrogels labeled with fluorescent fiducial markers, functionalization of substrates with ECM proteins, setting up the experiment, and imaging procedures. We demonstrate the application of this technique for quantitative analysis of traction forces exerted by myofibroblasts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gabbiani G, Hirschel BJ, Ryan GB et al (1972) Granulation tissue as a contractile organ: a study of structure and function. J Exp Med 135:719–734

    Article  CAS  Google Scholar 

  2. Forbes SJ, Rosenthal N (2014) Preparing the ground for tissue regeneration: from mechanism to therapy. Nat Med 20:857–869

    Article  CAS  Google Scholar 

  3. Duffield JS (2014) Cellular and molecular mechanisms in kidney fibrosis. J Clin Invest 124:2299–2306

    Article  CAS  Google Scholar 

  4. Otranto M, Sarrazy V, Bonté F et al (2012) The role of the myofibroblast in tumor stroma remodeling. Cell Adhes Migr 6:203–219

    Article  Google Scholar 

  5. Kanchanawong P, Shtengel G, Pasapera AM et al (2010) Nanoscale architecture of integrin-based cell adhesions. Nature 468:580–584

    Article  CAS  Google Scholar 

  6. Harris AK, Wild P, Stopak D (1980) Silicone rubber substrata: a new wrinkle in the study of cell locomotion. Science 208:177–179

    Article  CAS  Google Scholar 

  7. Beningo KA, Wang YL (2002) Flexible substrate for the detection of cellular traction forces. Trends Cell Biol 12:79–84

    Article  CAS  Google Scholar 

  8. Kraning-Rush CM, Carey SP, Califano JP et al (2012) Quantifying traction stresses in adherent cells. Methods Cell Biol 110:139–178

    Article  Google Scholar 

  9. Yoshie H, Koushki N, Kaviani R et al (2018) Traction force screening enabled by compliant PDMS elastomers. Biophys J 114:2194–2199

    Article  CAS  Google Scholar 

  10. Herrick WG, Nguyen TV, Sleiman M et al (2013) PEG-phosphorylcholine hydrogels as tunable and versatile platforms for mechanobiology. Biomacromolecules 14:2294–2304

    Article  CAS  Google Scholar 

  11. Pelham RJ, Wang YL (1997) Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Natl Acad Sci U S A 94:13661–13665

    Article  CAS  Google Scholar 

  12. Gardel ML, Sabass B, Ji L et al (2008) Traction stress in focal adhesions correlates biphasically with actin retrograde flow speed. J Cell Biol 183:999–1005

    Article  CAS  Google Scholar 

  13. Pasqualini FS, Agarwal A (2018) Traction force microscopy of engineered cardiac tissues. PLoS One 13(3):e0194706. https://doi.org/10.1371/journal.pone.0194706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sabass B, Gardel ML, Waterman CM et al (2008) High resolution traction force microscopy based on experimental and computational advances. Biophys J 94:207–220

    Article  CAS  Google Scholar 

  15. Plotnikov SV, Pasapera AM, Sabass B et al (2012) Force fluctuations within focal adhesions mediate ECM-rigidity sensing to guide directed cell migration. Cell 151:1513–1527

    Article  CAS  Google Scholar 

  16. Webb DJ, Donais K, Whitmore LA et al (2004) FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly. Nat Cell Biol 6:154–161

    Article  CAS  Google Scholar 

  17. Huang Y, Gompper G, Sabass B (2020) A Bayesian traction force microscopy method with automated denoising in a user-friendly software package. Comput Phys Commun 256:107313. https://doi.org/10.1016/j.cpc.2020.107313

    Article  CAS  Google Scholar 

  18. Nobach H, Honkanen M (2005) Two-dimensional Gaussian regression for sub-pixel displacement estimation in particle image velocimetry or particle position estimation in particle tracking velocimetry. Exp Fluids 38:511–515

    Article  Google Scholar 

  19. Yeung T, Georges PC, Flanagan LA et al (2005) Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil Cytoskeleton 60:24–34

    Article  Google Scholar 

  20. Aratyn-Schaus Y, Gardel ML (2010) Transient frictional slip between integrin and the ECM in focal adhesions under myosin II tension. Curr Biol 20:1145–1153

    Article  CAS  Google Scholar 

  21. Sen S, Engler AJ, Discher DE (2009) Matrix strains induced by cells: computing how far cells can feel. Cell Mol Bioeng 2:39–48

    Article  Google Scholar 

Download references

Acknowledgments

Shuying Yang and Fernando R. Valencia contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey V. Plotnikov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yang, S., Valencia, F.R., Sabass, B., Plotnikov, S.V. (2021). Quantitative Analysis of Myofibroblast Contraction by Traction Force Microscopy. In: Hinz, B., Lagares, D. (eds) Myofibroblasts. Methods in Molecular Biology, vol 2299. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1382-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1382-5_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1381-8

  • Online ISBN: 978-1-0716-1382-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics