Skip to main content

Monitoring the 5-Methoxycarbonylmethyl-2-Thiouridine (mcm5s2U) Modification Utilizing the Gamma-Toxin Endonuclease

  • Protocol
  • First Online:
RNA Modifications

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2298))

Abstract

The post-transcriptional modification of tRNAs at the wobble position plays a critical role in proper mRNA decoding and efficient protein synthesis. In particular, certain wobble uridines in eukaryotes are converted to 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U). The mcm5s2U modification modulates decoding during translation by increasing the stringency of the wobble uridine to base pair with its canonical nucleotide partner, thereby restricting decoding to its cognate codon. Here, we outline a technique to monitor wobble uridine status in mcm5s2U-containing tRNAs using the gamma-toxin endonuclease from the yeast Kluyveromyces lactis that naturally cleaves tRNAs containing the mcm5s2U modification. This technique is coupled to Northern blotting or reverse transcription-PCR to enable rapid and sensitive detection of changes in mcm5s2U modification state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Grosjean H, de Crecy-Lagard V, Marck C (2010) Deciphering synonymous codons in the three domains of life: co-evolution with specific tRNA modification enzymes. FEBS Lett 584(2):252–264. https://doi.org/10.1016/j.febslet.2009.11.052

    Article  CAS  PubMed  Google Scholar 

  2. Agris PF, Eruysal ER, Narendran A, Vare VYP, Vangaveti S, Ranganathan SV (2018) Celebrating wobble decoding: half a century and still much is new. RNA Biol 15(4–5):537–553. https://doi.org/10.1080/15476286.2017.1356562

    Article  PubMed  Google Scholar 

  3. Schaffrath R, Leidel SA (2017) Wobble uridine modifications-a reason to live, a reason to die?! RNA Biol 14(9):1209–1222. https://doi.org/10.1080/15476286.2017.1295204

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bauer F, Matsuyama A, Candiracci J, Dieu M, Scheliga J, Wolf DA, Yoshida M, Hermand D (2012) Translational control of cell division by Elongator. Cell Rep 1(5):424–433. https://doi.org/10.1016/j.celrep.2012.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen C, Tuck S, Bystrom AS (2009) Defects in tRNA modification associated with neurological and developmental dysfunctions in Caenorhabditis elegans elongator mutants. PLoS Genet 5(7):e1000561. https://doi.org/10.1371/journal.pgen.1000561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Deng W, Babu IR, Su D, Yin S, Begley TJ, Dedon PC (2015) Trm9-catalyzed tRNA modifications regulate global protein expression by codon-biased translation. PLoS Genet 11(12):e1005706. https://doi.org/10.1371/journal.pgen.1005706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fernandez-Vazquez J, Vargas-Perez I, Sanso M, Buhne K, Carmona M, Paulo E, Hermand D, Rodriguez-Gabriel M, Ayte J, Leidel S, Hidalgo E (2013) Modification of tRNA(Lys) UUU by elongator is essential for efficient translation of stress mRNAs. PLoS Genet 9(7):e1003647. https://doi.org/10.1371/journal.pgen.1003647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Klassen R, Ciftci A, Funk J, Bruch A, Butter F, Schaffrath R (2016) tRNA anticodon loop modifications ensure protein homeostasis and cell morphogenesis in yeast. Nucleic Acids Res 44(22):10946–10959. https://doi.org/10.1093/nar/gkw705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Patil A, Chan CT, Dyavaiah M, Rooney JP, Dedon PC, Begley TJ (2012) Translational infidelity-induced protein stress results from a deficiency in Trm9-catalyzed tRNA modifications. RNA Biol 9(7):990–1001. https://doi.org/10.4161/rna.20531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schaffrath R, Klassen R (2017) Combined tRNA modification defects impair protein homeostasis and synthesis of the yeast prion protein Rnq1. Prion 11(1):48–53. https://doi.org/10.1080/19336896.2017.1284734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bennett CB, Lewis LK, Karthikeyan G, Lobachev KS, Jin YH, Sterling JF, Snipe JR, Resnick MA (2001) Genes required for ionizing radiation resistance in yeast. Nat Genet 29(4):426–434. https://doi.org/10.1038/ng778

    Article  CAS  PubMed  Google Scholar 

  12. Begley TJ, Rosenbach AS, Ideker T, Samson LD (2002) Damage recovery pathways in Saccharomyces cerevisiae revealed by genomic phenotyping and interactome mapping. Mol Cancer Res 1(2):103–112

    CAS  PubMed  Google Scholar 

  13. Begley TJ, Rosenbach AS, Ideker T, Samson LD (2004) Hot spots for modulating toxicity identified by genomic phenotyping and localization mapping. Mol Cell 16(1):117–125. https://doi.org/10.1016/j.molcel.2004.09.005

    Article  CAS  PubMed  Google Scholar 

  14. Endres L, Begley U, Clark R, Gu C, Dziergowska A, Malkiewicz A, Melendez JA, Dedon PC, Begley TJ (2015) Alkbh8 regulates selenocysteine-protein expression to protect against reactive oxygen species damage. PLoS One 10(7):e0131335. https://doi.org/10.1371/journal.pone.0131335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fu D, Brophy JA, Chan CT, Atmore KA, Begley U, Paules RS, Dedon PC, Begley TJ, Samson LD (2010) Human AlkB homolog ABH8 is a tRNA methyltransferase required for wobble uridine modification and DNA damage survival. Mol Cell Biol 30(10):2449–2459. https://doi.org/10.1128/MCB.01604-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Begley U, Dyavaiah M, Patil A, Rooney JP, DiRenzo D, Young CM, Conklin DS, Zitomer RS, Begley TJ (2007) Trm9-catalyzed tRNA modifications link translation to the DNA damage response. Mol Cell 28(5):860–870. https://doi.org/10.1016/j.molcel.2007.09.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Karlsborn T, Tukenmez H, Chen C, Bystrom AS (2014) Familial dysautonomia (FD) patients have reduced levels of the modified wobble nucleoside mcm(5)s(2)U in tRNA. Biochem Biophys Res Commun 454(3):441–445. https://doi.org/10.1016/j.bbrc.2014.10.116

    Article  CAS  PubMed  Google Scholar 

  18. Kojic M, Wainwright B (2016) The many faces of elongator in neurodevelopment and disease. Front Mol Neurosci 9:115. https://doi.org/10.3389/fnmol.2016.00115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yoshida M, Kataoka N, Miyauchi K, Ohe K, Iida K, Yoshida S, Nojima T, Okuno Y, Onogi H, Usui T, Takeuchi A, Hosoya T, Suzuki T, Hagiwara M (2015) Rectifier of aberrant mRNA splicing recovers tRNA modification in familial dysautonomia. Proc Natl Acad Sci U S A 112(9):2764–2769. https://doi.org/10.1073/pnas.1415525112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dauden MI, Jaciuk M, Muller CW, Glatt S (2018) Structural asymmetry in the eukaryotic Elongator complex. FEBS Lett 592(4):502–515. https://doi.org/10.1002/1873-3468.12865

    Article  CAS  PubMed  Google Scholar 

  21. Karlsborn T, Tukenmez H, Mahmud AK, Xu F, Xu H, Bystrom AS (2014) Elongator, a conserved complex required for wobble uridine modifications in eukaryotes. RNA Biol 11(12):1519–1528. https://doi.org/10.4161/15476286.2014.992276

    Article  PubMed  Google Scholar 

  22. Kolaj-Robin O, Seraphin B (2017) Structures and activities of the Elongator complex and its cofactors. Enzyme 41:117–149. https://doi.org/10.1016/bs.enz.2017.03.001

    Article  CAS  Google Scholar 

  23. Bourgeois G, Letoquart J, van Tran N, Graille M (2017) Trm112, a protein activator of methyltransferases modifying actors of the eukaryotic translational apparatus. Biomol Ther 7(1). https://doi.org/10.3390/biom7010007

  24. Dewez M, Bauer F, Dieu M, Raes M, Vandenhaute J, Hermand D (2008) The conserved wobble uridine tRNA thiolase Ctu1-Ctu2 is required to maintain genome integrity. Proc Natl Acad Sci U S A 105(14):5459–5464. https://doi.org/10.1073/pnas.0709404105

    Article  PubMed  PubMed Central  Google Scholar 

  25. Huang B, Lu J, Bystrom AS (2008) A genome-wide screen identifies genes required for formation of the wobble nucleoside 5-methoxycarbonylmethyl-2-thiouridine in Saccharomyces cerevisiae. RNA 14(10):2183–2194. https://doi.org/10.1261/rna.1184108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kalhor HR, Clarke S (2003) Novel methyltransferase for modified uridine residues at the wobble position of tRNA. Mol Cell Biol 23(24):9283–9292. https://doi.org/10.1128/mcb.23.24.9283-9292.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Leidel S, Pedrioli PG, Bucher T, Brost R, Costanzo M, Schmidt A, Aebersold R, Boone C, Hofmann K, Peter M (2009) Ubiquitin-related modifier Urm1 acts as a Sulphur carrier in thiolation of eukaryotic transfer RNA. Nature 458(7235):228–232. https://doi.org/10.1038/nature07643

    Article  CAS  PubMed  Google Scholar 

  28. Letoquart J, van Tran N, Caroline V, Aleksandrov A, Lazar N, van Tilbeurgh H, Liger D, Graille M (2015) Insights into molecular plasticity in protein complexes from Trm9-Trm112 tRNA modifying enzyme crystal structure. Nucleic Acids Res 43(22):10989–11002. https://doi.org/10.1093/nar/gkv1009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liger D, Mora L, Lazar N, Figaro S, Henri J, Scrima N, Buckingham RH, van Tilbeurgh H, Heurgue-Hamard V, Graille M (2011) Mechanism of activation of methyltransferases involved in translation by the Trm112 'hub' protein. Nucleic Acids Res 39(14):6249–6259. https://doi.org/10.1093/nar/gkr176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nakai Y, Nakai M, Yano T (2017) Sulfur modifications of the wobble U34 in tRNAs and their intracellular localization in eukaryotic cells. Biomol Ther 7(1). https://doi.org/10.3390/biom7010017

  31. Noma A, Sakaguchi Y, Suzuki T (2009) Mechanistic characterization of the sulfur-relay system for eukaryotic 2-thiouridine biogenesis at tRNA wobble positions. Nucleic Acids Res 37(4):1335–1352. https://doi.org/10.1093/nar/gkn1023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Songe-Moller L, van den Born E, Leihne V, Vagbo CB, Kristoffersen T, Krokan HE, Kirpekar F, Falnes PO, Klungland A (2010) Mammalian ALKBH8 possesses tRNA methyltransferase activity required for the biogenesis of multiple wobble uridine modifications implicated in translational decoding. Mol Cell Biol 30(7):1814–1827. https://doi.org/10.1128/MCB.01602-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen C, Huang B, Anderson JT, Bystrom AS (2011) Unexpected accumulation of ncm(5)U and ncm(5)S(2) (U) in a trm9 mutant suggests an additional step in the synthesis of mcm(5)U and mcm(5)S(2)U. PLoS One 6(6):e20783. https://doi.org/10.1371/journal.pone.0020783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. van den Born E, Vagbo CB, Songe-Moller L, Leihne V, Lien GF, Leszczynska G, Malkiewicz A, Krokan HE, Kirpekar F, Klungland A, Falnes PO (2011) ALKBH8-mediated formation of a novel diastereomeric pair of wobble nucleosides in mammalian tRNA. Nat Commun 2:172. https://doi.org/10.1038/ncomms1173

    Article  CAS  PubMed  Google Scholar 

  35. Leihne V, Kirpekar F, Vagbo CB, van den Born E, Krokan HE, Grini PE, Meza TJ, Falnes PO (2011) Roles of Trm9- and ALKBH8-like proteins in the formation of modified wobble uridines in Arabidopsis tRNA. Nucleic Acids Res 39(17):7688–7701. https://doi.org/10.1093/nar/gkr406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gu C, Ramos J, Begley U, Dedon PC, Fu D, Begley TJ (2018) Phosphorylation of human TRM9L integrates multiple stress-signaling pathways for tumor growth suppression. Sci Adv 4(7):eaas9184. https://doi.org/10.1126/sciadv.aas9184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Begley U, Sosa M, Avivar-Valderas A, Patil A, Endres L, Estrada Y, Chan C, Su D, Dedon P, Aguirre-Ghiso J, Begley T (2013) A human tRNA methyltransferase 9-like protein prevents tumour growth by regulating LIN9 and HIF1-α. EMBO Mol Med 5(3):366–383. https://doi.org/10.1002/emmm.201201161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chan CT, Dyavaiah M, DeMott MS, Taghizadeh K, Dedon PC, Begley TJ (2010) A quantitative systems approach reveals dynamic control of tRNA modifications during cellular stress. PLoS Genet 6(12):e1001247. https://doi.org/10.1371/journal.pgen.1001247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jablonowski D, Schaffrath R (2007) Zymocin, a composite chitinase and tRNase killer toxin from yeast. Biochem Soc Trans 35(Pt 6):1533–1537. https://doi.org/10.1042/BST0351533

    Article  CAS  PubMed  Google Scholar 

  40. Jablonowski D, Zink S, Mehlgarten C, Daum G, Schaffrath R (2006) tRNAGlu wobble uridine methylation by Trm9 identifies Elongator’s key role for zymocin-induced cell death in yeast. Mol Microbiol 59(2):677–688. https://doi.org/10.1111/j.1365-2958.2005.04972.x

    Article  CAS  PubMed  Google Scholar 

  41. Lu J, Esberg A, Huang B, Bystrom AS (2008) Kluyveromyces lactis gamma-toxin, a ribonuclease that recognizes the anticodon stem loop of tRNA. Nucleic Acids Res 36(4):1072–1080. https://doi.org/10.1093/nar/gkm1121

    Article  CAS  PubMed  Google Scholar 

  42. Lu J, Huang B, Esberg A, Johansson MJ, Bystrom AS (2005) The Kluyveromyces lactis gamma-toxin targets tRNA anticodons. RNA 11(11):1648–1654. https://doi.org/10.1261/rna.2172105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Butler AR, White JH, Stark MJ (1991) Analysis of the response of Saccharomyces cerevisiae cells to Kluyveromyces lactis toxin. J Gen Microbiol 137(7):1749–1757. https://doi.org/10.1099/00221287-137-7-1749

    Article  CAS  PubMed  Google Scholar 

  44. Lentini JM, Ramos J, Fu D (2018) Monitoring the 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U) modification in eukaryotic tRNAs via the gamma-toxin endonuclease. RNA 24(5):749–758. https://doi.org/10.1261/rna.065581.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Padgett LR, Lentini JM, Holmes MJ, Stilger KL, Fu D, Sullivan WJ Jr (2018) Elp3 and RlmN: a tale of two mitochondrial tail-anchored radical SAM enzymes in toxoplasma gondii. PLoS One 13(1):e0189688. https://doi.org/10.1371/journal.pone.0189688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bogart K, Andrews J (2006) Extraction of total RNA from drosophila. Center for Genomics and Bioinformatics CGB Technical Report 10:1–4

    Google Scholar 

  47. Stead MB, Agrawal A, Bowden KE, Nasir R, Mohanty BK, Meagher RB, Kushner SR (2012) RNAsnap: a rapid, quantitative and inexpensive, method for isolating total RNA from bacteria. Nucleic Acids Res 40(20):e156. https://doi.org/10.1093/nar/gks680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Collart MA, Oliviero S (2001) Preparation of yeast RNA. Curr Protoc Mol Biol Chapter 13:Unit13 12. https://doi.org/10.1002/0471142727.mb1312s23

    Article  Google Scholar 

  49. Chan PP, Lowe TM (2016) GtRNAdb 2.0: an expanded database of transfer RNA genes identified in complete and draft genomes. Nucleic Acids Res 44(D1):D184–D189. https://doi.org/10.1093/nar/gkv1309

    Article  CAS  PubMed  Google Scholar 

  50. van Houten V, Denkers F, van Dijk M, van den Brekel M, Brakenhoff R (1998) Labeling efficiency of oligonucleotides by T4 polynucleotide kinase depends on 5′-nucleotide. Anal Biochem 265(2):386–389. https://doi.org/10.1006/abio.1998.2900

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Stewart Shuman at Memorial Sloan Kettering for the gamma-toxin expression plasmid along with Jillian Ramos and Kejia Zhang for comments on the chapter. This work was supported by NSF CAREER Award 1552126 to D.F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dragony Fu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lentini, J.M., Fu, D. (2021). Monitoring the 5-Methoxycarbonylmethyl-2-Thiouridine (mcm5s2U) Modification Utilizing the Gamma-Toxin Endonuclease. In: McMahon, M. (eds) RNA Modifications. Methods in Molecular Biology, vol 2298. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1374-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1374-0_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1373-3

  • Online ISBN: 978-1-0716-1374-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics