Skip to main content

Mass Spectrometry-Based Profiling of Plant Sphingolipids from Typical and Aberrant Metabolism

  • Protocol
  • First Online:
Plant Lipids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2295))

Abstract

Mass spectrometry has increasingly been used as a tool to complement studies of sphingolipid metabolism and biological functions in plants and other eukaryotes. Mass spectrometry is now essential for comprehensive sphingolipid analytical profiling because of the huge diversity of sphingolipid classes and molecular species in eukaryotes, particularly in plants. This structural diversity arises from large differences in polar head group glycosylation as well as carbon-chain lengths of fatty acids and desaturation and hydroxylation patterns of fatty acids and long-chain bases that together comprise the ceramide hydrophobic backbone of glycosphingolipids. The standard methods for liquid chromatography–mass spectrometry (LC-MS)-based analyses of Arabidopsis thaliana leaf sphingolipids profile >200 molecular species of four sphingolipid classes and free long-chain bases and their phosphorylated forms. While these methods have proven valuable for A. thaliana based sphingolipid research, we have recently adapted them for use with ultraperformance liquid chromatography separations of molecular species and to profile aberrant sphingolipid forms in pollen, transgenic lines, and mutants. This chapter provides updates to standard methods for LC-MS profiling of A. thaliana sphingolipids to expand the utility of mass spectrometry for plant sphingolipid research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huby E, Napier JA, Baillieul F, Michaelson LV, Dhondt-Cordelier S (2020) Sphingolipids: towards an integrated view of metabolism during the plant stress response. New Phytol 225:659–670

    Article  Google Scholar 

  2. Liang H, Yao N, Song JT, Luo S, Lu H, Greenberg JT (2003) Ceramides modulate programmed cell death in plants. Genes Dev 17:2636–2641

    Article  CAS  Google Scholar 

  3. Magnin-Robert M, Le Bourse D, Markham J, Dorey S, Clement C, Baillieul F et al (2015) Modifications of sphingolipid content affect tolerance to hemibiotrophic and necrotrophic pathogens by modulating plant defense responses in Arabidopsis. Plant Physiol 169:2255–2274

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Cacas JL, Bure C, Grosjean K, Gerbeau-Pissot P, Lherminier J, Rombouts Y et al (2016) Revisiting plant plasma membrane lipids in tobacco: a focus on sphingolipids. Plant Physiol 170:367–384

    Article  CAS  Google Scholar 

  5. Gronnier J, Germain V, Gouguet P, Cacas JL, Mongrand S (2016) GIPC: glycosyl inositol phospho ceramides, the major sphingolipids on earth. Plant Signal Behav 11:e1152438

    Article  Google Scholar 

  6. Lenarcic T, Albert I, Bohm H, Hodnik V, Pirc K, Zavec AB et al (2017) Eudicot plant-specific sphingolipids determine host selectivity of microbial NLP cytolysins. Science 358:1431–1434

    Article  CAS  Google Scholar 

  7. Mortimer JC, Scheller HV (2020) Synthesis and function of complex sphingolipid glycosylation. Trends Plant Sci 25:522–524

    Article  CAS  Google Scholar 

  8. Chen M, Cahoon EB, Saucedo-García M, Plasencia J, Gavilanes-Ruíz M (2009) Plant sphingolipids: structure, synthesis and function. In: Wada H, Murata N (eds) Lipids in photosynthesis: essential and regulatory functions. Springer, Dordrecht, pp 77–115

    Chapter  Google Scholar 

  9. Luttgeharm KD, Cahoon EB, Markham JE (2016) Substrate specificity, kinetic properties and inhibition by fumonisin B1 of ceramide synthase isoforms from Arabidopsis. Biochem J 473:593–603

    Article  CAS  Google Scholar 

  10. Ternes P, Feussner K, Werner S, Lerche J, Iven T, Heilmann I et al (2011) Disruption of the ceramide synthase LOH1 causes spontaneous cell death in Arabidopsis thaliana. New Phytol 192:841–854

    Article  CAS  Google Scholar 

  11. Alden KP, Dhondt-Cordelier S, McDonald KL, Reape TJ, Ng CK, McCabe PF et al (2011) Sphingolipid long chain base phosphates can regulate apoptotic-like programmed cell death in plants. Biochem Biophys Res Commun 410:574–580

    Article  CAS  Google Scholar 

  12. Luttgeharm KD, Kimberlin AN, Cahoon EB (2016) Plant sphingolipid metabolism and function. Subcell Biochem 86:249–286

    Article  CAS  Google Scholar 

  13. Markham JE (2013) Detection and quantification of plant sphingolipids by LC-MS. Methods Mol Biol 1009:93–101

    Article  CAS  Google Scholar 

  14. Markham JE, Jaworski JG (2007) Rapid measurement of sphingolipids from Arabidopsis thaliana by reversed-phase high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry. Rapid Commun Mass Spectrom 21:1304–1314

    Article  CAS  Google Scholar 

  15. Chen M, Han G, Dietrich CR, Dunn TM, Cahoon EB (2006) The essential nature of sphingolipids in plants as revealed by the functional identification and characterization of the Arabidopsis LCB1 subunit of serine palmitoyltransferase. Plant Cell 18:3576–3593

    Article  CAS  Google Scholar 

  16. Dietrich CR, Han G, Chen M, Berg RH, Dunn TM, Cahoon EB (2008) Loss-of-function mutations and inducible RNAi suppression of Arabidopsis LCB2 genes reveal the critical role of sphingolipids in gametophytic and sporophytic cell viability. Plant J 54:284–298

    Article  CAS  Google Scholar 

  17. Gonzalez Solis A, Han G, Gan L, Liu Y, Markham JE, Cahoon RE et al (2020) Unregulated sphingolipid biosynthesis in gene-edited Arabidopsis ORM mutants results in nonviable seeds with strongly reduced oil content. Plant Cell. https://doi.org/10.1105/tpc.20.00015

  18. Kimberlin AN, Han G, Luttgeharm KD, Chen M, Cahoon RE, Stone JM et al (2016) ORM expression alters sphingolipid homeostasis and differentially affects ceramide synthase activity. Plant Physiol 172:889–900

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Kimberlin AN, Majumder S, Han G, Chen M, Cahoon RE, Stone JM et al (2013) Arabidopsis 56-amino acid serine palmitoyltransferase-interacting proteins stimulate sphingolipid synthesis, are essential, and affect mycotoxin sensitivity. Plant Cell 25:4627–4639

    Article  CAS  Google Scholar 

  20. Gable K, Slife H, Bacikova D, Monaghan E, Dunn TM (2000) Tsc3p is an 80-amino acid protein associated with serine palmitoyltransferase and required for optimal enzyme activity. J Biol Chem 275:7597–7603

    Article  CAS  Google Scholar 

  21. Breslow DK, Collins SR, Bodenmiller B, Aebersold R, Simons K, Shevchenko A et al (2010) Orm family proteins mediate sphingolipid homeostasis. Nature 463:1048–1053

    Article  CAS  Google Scholar 

  22. Li J, Yin J, Rong C, Li KE, Wu JX, Huang LQ et al (2016) Orosomucoid proteins interact with the small subunit of serine palmitoyltransferase and contribute to sphingolipid homeostasis and stress responses in Arabidopsis. Plant Cell 28:3038–3051

    Article  CAS  Google Scholar 

  23. Bejaoui K, Uchida Y, Yasuda S, Ho M, Nishijima M, Brown RH Jr et al (2002) Hereditary sensory neuropathy type 1 mutations confer dominant negative effects on serine palmitoyltransferase, critical for sphingolipid synthesis. J Clin Invest 110:1301–1308

    Article  CAS  Google Scholar 

  24. Gable K, Gupta SD, Han G, Niranjanakumari S, Harmon JM, Dunn TM (2010) A disease-causing mutation in the active site of serine palmitoyltransferase causes catalytic promiscuity. J Biol Chem 285:22846–22852

    Article  CAS  Google Scholar 

  25. McCampbell A, Truong D, Broom DC, Allchorne A, Gable K, Cutler RG et al (2005) Mutant SPTLC1 dominantly inhibits serine palmitoyltransferase activity in vivo and confers an age-dependent neuropathy. Hum Mol Genet 14:3507–3521

    Article  CAS  Google Scholar 

  26. Konig S, Feussner K, Schwarz M, Kaever A, Iven T, Landesfeind M et al (2012) Arabidopsis mutants of sphingolipid fatty acid α-hydroxylases accumulate ceramides and salicylates. New Phytol 196:1086–1097

    Article  Google Scholar 

  27. Msanne J, Chen M, Luttgeharm KD, Bradley AM, Mays ES, Paper JM et al (2015) Glucosylceramides are critical for cell-type differentiation and organogenesis, but not for cell viability in Arabidopsis. Plant J 84:188–201

    Article  CAS  Google Scholar 

  28. Cacas JL, Bure C, Furt F, Maalouf JP, Badoc A, Cluzet S et al (2013) Biochemical survey of the polar head of plant glycosylinositolphosphoceramides unravels broad diversity. Phytochemistry 96:191–200

    Article  CAS  Google Scholar 

  29. Luttgeharm KD, Kimberlin AN, Cahoon RE, Cerny RL, Napier JA, Markham JE et al (2015) Sphingolipid metabolism is strikingly different between pollen and leaf in Arabidopsis as revealed by compositional and gene expression profiling. Phytochemistry 115:121–129

    Article  CAS  Google Scholar 

  30. Rennie EA, Ebert B, Miles GP, Cahoon RE, Christiansen KM, Stonebloom S et al (2014) Identification of a sphingolipid α-glucuronosyltransferase that is essential for pollen function in Arabidopsis. Plant Cell 26:3314–3325

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a National Science Foundation grant MCB 1818297 to E.B.C. and J.E.M. A.G.S. acknowledges funding from the Mexican National Council of Science and Technology (CONACyT).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cahoon, R.E., Solis, A.G., Markham, J.E., Cahoon, E.B. (2021). Mass Spectrometry-Based Profiling of Plant Sphingolipids from Typical and Aberrant Metabolism. In: Bartels, D., Dörmann, P. (eds) Plant Lipids. Methods in Molecular Biology, vol 2295. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1362-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1362-7_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1361-0

  • Online ISBN: 978-1-0716-1362-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics