Skip to main content

FLIPR Calcium Mobilization Assays in GPCR Drug Discovery

  • Protocol
  • First Online:
G Protein-Coupled Receptor Screening Assays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2268))

Abstract

Intracellular calcium mobilization can be measured using several methods varying in indicator dyes and devices used. In this chapter, we describe the fluorescence-based method (FLIPR Calcium 4 Assay) developed by Molecular Devices for a FlexStation and routinely used in our laboratory for detecting intracellular calcium changes. The assay is designed to study calcium mobilization induced by majority of GPCRs and calcium channels and allows for simultaneous concentration-dependent analysis of several receptor agonists and antagonists, useful in receptor characterization and drug discovery projects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marinissen MJ, Gutkind JS (2001) G-protein-coupled receptors and signaling networks: emerging paradigms. Trends Pharmacol Sci 22:368–376

    Article  CAS  Google Scholar 

  2. Berridge MJ (1993) Inositol trisphosphate and calcium signalling. Nature 361:315–325

    Article  CAS  Google Scholar 

  3. Clapham DE (1995) Calcium signaling. Cell 80:259–268

    Article  CAS  Google Scholar 

  4. Offermanns S, Simon MI (1995) G alpha 15 and G alpha 16 couple a wide variety of receptors to phospholipase C. J Biol Chem 270:15175–15180

    Article  CAS  Google Scholar 

  5. Ridgway EB, Ashley CC (1967) Calcium transients in single muscle fibers. Biochem Biophys Res Commun 29:229–234

    Article  CAS  Google Scholar 

  6. Stables J, Green A, Marshall F, Fraser N, Knight E, Sautel M, Milligan G, Lee M, Rees S (1997) A bioluminescent assay for agonist activity at potentially any G-protein-coupled receptor. Anal Biochem 252:115–126

    Article  CAS  Google Scholar 

  7. Stables J, Mattheakis LC, Chang R, Rees S (2000) Recombinant aequorin as reporter of changes in intracellular calcium in mammalian cells. Methods Enzymol 327:456–471

    Article  CAS  Google Scholar 

  8. Brini M, Pinton P, Pozzan T, Rizzuto R (1999) Targeted recombinant aequorins: tools for monitoring [Ca2+] in the various compartments of a living cell. Microsc Res Tech 46:380–389

    Article  CAS  Google Scholar 

  9. Minta A, Kao JP, Tsien RY (1989) Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores. J Biol Chem 264:8171–8178

    Article  CAS  Google Scholar 

  10. Woszczek G, Chen LY, Nagineni S, Alsaaty S, Harry A, Logun C, Pawliczak R, Shelhamer JH (2007) IFN-gamma induces cysteinyl leukotriene receptor 2 expression and enhances the responsiveness of human endothelial cells to cysteinyl leukotrienes. J Immunol 178:5262–5270

    Article  CAS  Google Scholar 

  11. Chen LY, Woszczek G, Nagineni S, Logun C, Shelhamer JH (2008) Cytosolic phospholipase A2alpha activation induced by S1P is mediated by the S1P3 receptor in lung epithelial cells. Am J Physiol Lung Cell Mol Physiol 295:L326–L335

    Article  CAS  Google Scholar 

  12. Wilson GA, Butcher LM, Foster HR, Feber A, Roos C, Walter L, Woszczek G, Beck S, Bell CG (2014) Human-specific epigenetic variation in the immunological Leukotriene B4 Receptor (LTB4R/BLT1) implicated in common inflammatory diseases. Genome Med 6:19

    Article  Google Scholar 

  13. Chen LY, Eberlein M, Alsaaty S, Martinez-Anton A, Barb J, Munson PJ, Danner RL, Liu Y, Logun C, Shelhamer JH, Woszczek G (2011) Cooperative and redundant signaling of leukotriene B4 and leukotriene D4 in human monocytes. Allergy 66:1304–1311

    Article  CAS  Google Scholar 

  14. Parmentier CN, Fuerst E, McDonald J, Bowen H, Lee TH, Pease JE, Woszczek G, Cousins DJ (2012) Human T(H)2 cells respond to cysteinyl leukotrienes through selective expression of cysteinyl leukotriene receptor 1. J Allergy Clin Immunol 129:1136–1142

    Article  CAS  Google Scholar 

  15. Woszczek G, Chen LY, Nagineni S, Shelhamer JH (2008) IL-10 inhibits cysteinyl leukotriene-induced activation of human monocytes and monocyte-derived dendritic cells. J Immunol 180:7597–7603

    Article  CAS  Google Scholar 

  16. Foster HR, Fuerst E, Lee TH, Cousins DJ, Woszczek G (2013) Characterisation of P2Y(12) receptor responsiveness to cysteinyl leukotrienes. PLoS One 8:e58305

    Article  CAS  Google Scholar 

  17. Foster HR, Fuerst E, Branchett W, Lee TH, Cousins DJ, Woszczek G (2016) Leukotriene E4 is a full functional agonist for human cysteinyl leukotriene type 1 receptor-dependent gene expression. Sci Rep 6:20461

    Article  CAS  Google Scholar 

  18. Woszczek G, Chen LY, Nagineni S, Kern S, Barb J, Munson PJ, Logun C, Danner RL, Shelhamer JH (2008) Leukotriene D(4) induces gene expression in human monocytes through cysteinyl leukotriene type I receptor. J Allergy Clin Immunol 121:215–221

    Article  CAS  Google Scholar 

  19. Chan V, Burgess JK, Ratoff JC, O’Connor BJ, Greenough A, Lee TH, Hirst SJ (2006) Extracellular matrix regulates enhanced eotaxin expression in asthmatic airway smooth muscle cells. Am J Respir Crit Care Med 174:379–385

    Article  CAS  Google Scholar 

  20. Fuerst E, Foster HR, Ward JP, Corrigan CJ, Cousins DJ, Woszczek G (2014) Sphingosine-1-phosphate induces pro-remodelling response in airway smooth muscle cells. Allergy 69:1531–1539

    Article  CAS  Google Scholar 

  21. Kirshenbaum AS, Akin C, Wu Y, Rottem M, Goff JP, Beaven MA, Rao VK, Metcalfe DD (2003) Characterization of novel stem cell factor responsive human mast cell lines LAD 1 and 2 established from a patient with mast cell sarcoma/leukemia; activation following aggregation of FcepsilonRI or FcgammaRI. Leuk Res 27:677–682

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grzegorz Woszczek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Woszczek, G., Fuerst, E., Maguire, T.J.A. (2021). FLIPR Calcium Mobilization Assays in GPCR Drug Discovery. In: Martins, S.A.M., Prazeres, D.M.F. (eds) G Protein-Coupled Receptor Screening Assays. Methods in Molecular Biology, vol 2268. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1221-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1221-7_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1220-0

  • Online ISBN: 978-1-0716-1221-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics