Skip to main content

A Protocol to Use Comparative Binding Energy Analysis to Estimate Drug-Target Residence Time

  • Protocol
  • First Online:
Protein-Ligand Interactions and Drug Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2266))

Abstract

Comparative Binding Energy (COMBINE) analysis is an approach for deriving a target-specific scoring function to compute binding free energy, drug-binding kinetics, or a related property by exploiting the information contained in the three-dimensional structures of receptor–ligand complexes. Here, we describe the process of setting up and running COMBINE analysis to derive a Quantitative Structure-Kinetics Relationship (QSKR) for the dissociation rate constants (koff) of inhibitors of a drug target. The derived QSKR model can be used to estimate residence times (τ, τ=1/koff) for similar inhibitors binding to the same target, and it can also help to identify key receptor–ligand interactions that distinguish inhibitors with short and long residence times. Herein, we demonstrate the protocol for the application of COMBINE analysis on a dataset of 70 inhibitors of heat shock protein 90 (HSP90) belonging to 11 different chemical classes. The procedure is generally applicable to any drug target with known structural information on its complexes with inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Copeland RA, Pompliano DL, Meek TD (2006) Drug–target residence time and its implications for lead optimization. Nat Rev Drug Discov 5:730–739

    Article  CAS  Google Scholar 

  2. Bruce NJ, Ganotra GK, Kokh DB et al (2018) New approaches for computing ligand–receptor binding kinetics. Curr Opin Struct Biol 49:1–10

    Article  CAS  Google Scholar 

  3. Cramer RD, Patterson DE, Bunce JD (1988) Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc 110:5959–5967

    Article  CAS  Google Scholar 

  4. Cruciani G, Watson KA (1994) Comparative molecular field analysis using GRID force-field and GOLPE variable selection methods in a study of inhibitors of glycogen Phosphorylase b. J Med Chem 37:2589–2601

    Article  CAS  Google Scholar 

  5. Ortiz AR, Pastor M, Palomer A et al (1997) Reliability of comparative molecular field analysis models : effects of data scaling and variable selection using a set of human synovial fluid. J Med Chem 2623:1136–1148

    Article  Google Scholar 

  6. Ganotra GK, Wade RC (2018) Prediction of drug-target binding kinetics by comparative binding energy analysis. ACS Med Chem Lett 9:1134–1139

    Article  CAS  Google Scholar 

  7. Ortiz AR, Pisabarro MT, Gago F et al (1995) Prediction of drug binding affinities by comparative binding energy analysis. J Med Chem 38:2681–2691

    Article  CAS  Google Scholar 

  8. Murcia M, Ortiz AR (2004) Virtual screening with flexible docking and COMBINE-based models. Application to a series of factor Xa inhibitors. J Med Chem 47:805–820

    Article  CAS  Google Scholar 

  9. Peón A, Coderch C, Gago F et al (2013) Comparative binding energy (COMBINE) analysis for understanding the binding determinants of TypeII Dehydroquinase inhibitors. ChemMedChem 8:740–747

    Article  Google Scholar 

  10. Nakamura S, Nakanishi I, Kitaura K (2006) Binding affinity prediction of non-peptide inhibitors of HIV-1 protease using COMBINE model introduced from peptide inhibitors. Bioorganic Med Chem Lett 16:6334–6337

    Article  CAS  Google Scholar 

  11. Liu S, Fu R, Cheng X et al (2012) Exploring the binding of BACE-1 inhibitors using comparative binding energy analysis (COMBINE). BMC Struct Biol 12:21

    Article  CAS  Google Scholar 

  12. Peters MB, Merz KM (2006) Semiempirical comparative binding energy analysis (SE-COMBINE) of a series of trypsin inhibitors. J Chem Theory Comput 2:383–399

    Article  CAS  Google Scholar 

  13. Tomic S, Nilsson L, Wade RC (2000) Nuclear receptor-DNA binding specificity: a COMBINE and free-Wilson QSAR analysis. J Med Chem 43:1780–1792

    Article  CAS  Google Scholar 

  14. Wang T, Wade RC (2002) Comparative binding energy (COMBINE) analysis of OppA-peptide complexes to relate structure to binding thermodynamics. J Med Chem 45:4828–4837

    Article  CAS  Google Scholar 

  15. Nakamura S, Ohmura R, Nakanishi I (2017) An interaction-based approach for affinity prediction between antigen peptide and human leukocyte antigen using COMBINE analysis. Chem-Bio Informatics J 17:93–102

    Article  CAS  Google Scholar 

  16. Tomić S, Bertoša B, Wang T et al (2007) COMBINE analysis of the specificity of binding of Ras proteins to their effectors. Proteins Struct Funct Genet 67:435–447

    Article  Google Scholar 

  17. Rännar S, Lindgren F, Geladi P et al (1994) A PLS kernel algorithm for data sets with many variables and fewer objects. Part 1: theory and algorithm. J Chemom 8:111–125

    Article  Google Scholar 

  18. Wold S, Sjöström M, Eriksson L (2001) PLS-regression: a basic tool of chemometrics. Chemom Intell Lab Syst 58:109–130

    Article  CAS  Google Scholar 

  19. Box GEP, Hunter JS, Hunter WG (2005) Statistics for experimenters: design, innovation, and discovery. Wiley-Interscience, New York

    Google Scholar 

  20. Åqvist J, Medina C, Samuelsson JE (1994) A new method for predicting binding affinity in computer-aided drug design. Protein Eng Des Sel 7:385–391

    Article  Google Scholar 

  21. Nunes-Alves A, Arantes GM (2014) Ligand-receptor affinities computed by an adapted linear interaction model for continuum electrostatics and by protein conformational averaging. J Chem Inf Model 54:2309–2319

    Article  CAS  Google Scholar 

  22. Bruce NJ, Ganotra GK, Richter S et al (2019) KBbox: a toolbox of computational methods for studying the kinetics of molecular binding. J Chem Inf Model 59:3630–3634

    Article  CAS  Google Scholar 

  23. Case DA, Babin V, Berryman JT et al (2014) AMBER14. University of California, San Francisco, CA

    Google Scholar 

  24. Gil-Redondo R, Klett J, Gago F et al (2010) gCOMBINE: a graphical user interface to perform structure-based comparative binding energy (COMBINE) analysis on a set of ligand-receptor complexes. Proteins Struct Funct Bioinforma 78:162–172

    Article  CAS  Google Scholar 

  25. Maier JA, Martinez C, Kasavajhala K et al (2015) ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput 11:3696–3713

    Article  CAS  Google Scholar 

  26. Wang J, Wolf RM, Caldwell JW et al (2004) Development and testing of a General Amber force field. J Comput Chem 25:1157–1174

    Article  CAS  Google Scholar 

  27. Ganotra G, Wade RC (2020) Dataset to perform COMBINE analysis using HSP90. https://doi.org/10.5281/ZENODO.3674994

  28. Golbraikh A, Tropsha A (2002) Beware of q2! J Mol Graph Model 20:269–276

    Article  CAS  Google Scholar 

  29. Dolinsky TJ, Nielsen JE, McCammon JA et al (2004) PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Res 32:W665–W667

    Article  CAS  Google Scholar 

  30. Dolinsky TJ, Czodrowski P, Li H et al (2007) PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Res 35:W522–W525

    Article  Google Scholar 

  31. Vriend G (1990) WHAT IF: a molecular modeling and drug design program. J Mol Graph 8:52–56

    Article  CAS  Google Scholar 

  32. Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF chimera - a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  Google Scholar 

  33. O’Boyle NM, Banck M, James CA et al (2011) Open babel: an open chemical toolbox. J Cheminform 3(33)

    Google Scholar 

  34. Bayly CI, Cieplak P, Cornell WD et al (1993) A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J Phys Chem 97:10269–10280

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the EU/EFPIA Innovative Medicines Initiative (IMI) Joint Undertaking, K4DD (Grant No. 115366), by the Klaus Tschira Foundation and by a Capes-Humboldt postdoctoral scholarship to A N-A (Capes process number 88881.162167/2017-01). G.K.G. also thanks HGSMathComp Graduate School, Heidelberg University for providing academic and administrative support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca C. Wade .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ganotra, G.K., Nunes-Alves, A., Wade, R.C. (2021). A Protocol to Use Comparative Binding Energy Analysis to Estimate Drug-Target Residence Time. In: Ballante, F. (eds) Protein-Ligand Interactions and Drug Design. Methods in Molecular Biology, vol 2266. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1209-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1209-5_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1208-8

  • Online ISBN: 978-1-0716-1209-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics