Skip to main content

Analysis of Protein–DNA Interactions Using Surface Plasmon Resonance and a ReDCaT Chip

  • Protocol
  • First Online:
Protein-Ligand Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2263))

Abstract

The recognition of specific DNA sequences by proteins is crucial to fundamental biological processes such as DNA replication, transcription, and gene regulation. The technique of surface plasmon resonance (SPR) is ideally suited for the measurement of these interactions because it is quantitative, simple to implement, reproducible, can be automated, and requires very little sample. This typically involves the direct capture of biotinylated DNA to a streptavidin (SA) chip before flowing over the protein of interest and monitoring the interaction. However, once the DNA has been immobilized on the chip, it cannot be removed without damaging the chip surface. Moreover, if the protein–DNA interaction is strong, then it may not be possible to remove the protein from the DNA without damaging the chip surface. Given that the chips are costly, this will limit the number of samples that can be tested. Therefore, we have developed a Reusable DNA Capture Technology, or ReDCaT chip, that enables a single streptavidin chip to be used multiple times making the technique simple, quick, and cost effective. The general steps to prepare the ReDCaT chip, run a simple binding experiment, and analysis of data will be described in detail. Some additional applications will also be introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buckle M (2001) Surface plasmon resonance applied to DNA-protein complexes. Methods Mol Biol 148:535–546. https://doi.org/10.1385/1-59259-208-2:535

    Article  CAS  PubMed  Google Scholar 

  2. Majka J, Speck C (2007) Analysis of protein-DNA interactions using surface plasmon resonance. Adv Biochem Eng Biotechnol 104:13–36

    CAS  PubMed  Google Scholar 

  3. Stockley PG, Persson B (2009) Surface plasmon resonance assays of DNA-protein interactions. Methods Mol Biol 543:653–669. https://doi.org/10.1007/978-1-60327-015-1_38

    Article  CAS  PubMed  Google Scholar 

  4. Buckle M, Williams RM, Negroni M, Buc H (1996) Real time measurements of elongation by a reverse transcriptase using surface plasmon resonance. Proc Natl Acad Sci U S A 93(2):889–894

    Article  CAS  Google Scholar 

  5. Katsamba PS, Park S, Laird-Offringa IA (2002) Kinetic studies of RNA-protein interactions using surface plasmon resonance. Methods 26(2):95–104. https://doi.org/10.1016/S1046-2023(02)00012-9

    Article  CAS  PubMed  Google Scholar 

  6. Park S, Myszka DG, Yu M, Littler SJ, Laird-Offringa IA (2000) HuD RNA recognition motifs play distinct roles in the formation of a stable complex with AU-rich RNA. Mol Cell Biol 20(13):4765–4772

    Article  CAS  Google Scholar 

  7. Stevenson CE, Assaad A, Chandra G et al (2013) Investigation of DNA sequence recognition by a streptomycete MarR family transcriptional regulator through surface plasmon resonance and X-ray crystallography. Nucleic Acids Res 41(14):7009–7022. https://doi.org/10.1093/nar/gkt523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tran NT, Stevenson CE, Som NF et al (2018) Permissive zones for the centromere-binding protein ParB on the Caulobacter crescentus chromosome. Nucleic Acids Res 46(3):1196–1209. https://doi.org/10.1093/nar/gkx1192

    Article  CAS  PubMed  Google Scholar 

  9. Bekiesch P, Forchhammer K, Apel AK (2016) Characterization of DNA binding sites of RokB, a ROK-family regulator from Streptomyces coelicolor reveals the RokB regulon. PLoS One 11(5):e0153249. https://doi.org/10.1371/journal.pone.0153249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bekiesch P, Franz-Wachtel M, Kulik A et al (2016) DNA affinity capturing identifies new regulators of the heterologously expressed novobiocin gene cluster in Streptomyces coelicolor M512. Appl Microbiol Biotechnol 100(10):4495–4509. https://doi.org/10.1007/s00253-016-7306-1

    Article  CAS  PubMed  Google Scholar 

  11. Campilongo R, Fung RKY, Little RH et al (2017) One ligand, two regulators and three binding sites: how KDPG controls primary carbon metabolism in Pseudomonas. PLoS Genet 13(6):e1006839. https://doi.org/10.1371/journal.pgen.1006839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fernandes GC, Hauf K, Sant'Anna FH et al (2017) Glutamine synthetase stabilizes the binding of GlnR to nitrogen fixation gene operators. FEBS J 284(6):903–918. https://doi.org/10.1111/febs.14021

    Article  CAS  PubMed  Google Scholar 

  13. Greive SJ, Fung HK, Chechik M et al (2016) DNA recognition for virus assembly through multiple sequence-independent interactions with a helix-turn-helix motif. Nucleic Acids Res 44(2):776–789. https://doi.org/10.1093/nar/gkv1467

    Article  CAS  PubMed  Google Scholar 

  14. Hauf K, Kayumov A, Gloge F, Forchhammer K (2016) The molecular basis of TnrA control by glutamine synthetase in Bacillus subtilis. J Biol Chem 291(7):3483–3495. https://doi.org/10.1074/jbc.M115.680991

    Article  CAS  PubMed  Google Scholar 

  15. Traore DAK, Wisniewski JA, Flanigan SF et al (2018) Crystal structure of TcpK in complex with oriT DNA of the antibiotic resistance plasmid pCW3. Nat Commun 9(1):3732. https://doi.org/10.1038/s41467-018-06096-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang T, Zhao X, Shi H et al (2018) Positive and negative regulation of transferred nif genes mediated by indigenous GlnR in Gram-positive Paenibacillus polymyxa. PLoS Genet 14(9):e1007629. https://doi.org/10.1371/journal.pgen.1007629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The work was carried out using the John Innes Centre Biophysical Analysis Facility with funding from the Biotechnology and Biological Sciences Research Council (UK) Institute Strategic Programme Grant BB/P012523/1. We would like to thank Julia Mundy for critically reading the chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clare E. M. Stevenson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Stevenson, C.E.M., Lawson, D.M. (2021). Analysis of Protein–DNA Interactions Using Surface Plasmon Resonance and a ReDCaT Chip. In: Daviter, T., Johnson, C.M., McLaughlin, S.H., Williams, M.A. (eds) Protein-Ligand Interactions. Methods in Molecular Biology, vol 2263. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1197-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1197-5_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1196-8

  • Online ISBN: 978-1-0716-1197-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics