Skip to main content

Single-Cell Analysis of Fungal Uptake in Cultured Airway Epithelial Cells Using Differential Fluorescent Staining and Imaging Flow Cytometry

  • Protocol
  • First Online:
Host-Fungal Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2260))

Abstract

The respiratory epithelium is the initial point of host contact for inhaled particles, leading to orchestrated, but highly heterogeneous, responses. Human airway epithelial cells (AECs) play a crucial role in host defense by promoting uptake and killing of inhaled microorganisms and concomitant cytokine production in order to recruit professional phagocytes to the site of infection. However, inhaled pathogens can also reside and replicate intracellularly to evade host immune defenses or circulating antimicrobial drugs, ultimately causing apoptosis or cell death of the infected AECs. Imaging flow cytometry (IFC) combines flow cytometry, fluorescent microscopy, and advanced data-processing algorithms to dissect the heterogeneity of the interaction of AECs and inhaled microorganisms and its outcomes at the single-cell level. Here, we describe a novel single-cell approach based on differential fluorescent staining and state-of-the-art IFC to identify, quantify, and analyze individual host–pathogen complexes from cultured AECs infected with spores of the major human fungal pathogen Aspergillus fumigatus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bertuzzi M, Hayes GE, Bignell EM (2019) Microbial uptake by the respiratory epithelium: outcomes for host and pathogen. FEMS Microbiol Rev 43:145–161

    Article  CAS  Google Scholar 

  2. Bertuzzi M, Hayes GE, Icheoku UJ, van Rhijn N, Denning DW, Osherov N, Bignell EM (2018) Anti-aspergillus activities of the respiratory epithelium in health and disease. J Fungi 4:8

    Article  Google Scholar 

  3. Muskavitch MA, Barteneva N, Gubbels MJ (2008) Chemogenomics and parasitology: small molecules and cell-based assays to study infectious processes. Comb Chem High Throughput Screen 11:624–646

    Article  CAS  Google Scholar 

  4. Helaine S, Thompson JA, Watson KG, Liu M, Boyle C, Holden DW (2010) Dynamics of intracellular bacterial replication at the single cell level. Proc Natl Acad Sci U S A 107:3746–3751

    Article  CAS  Google Scholar 

  5. Toma C, Okura N, Takayama C, Suzuki T (2011) Characteristic features of intracellular pathogenic Leptospira in infected murine macrophages. Cell Microbiol 13:1783–1792

    Article  CAS  Google Scholar 

  6. Bailo N, Cosson P, Charette SJ, Paquet VE, Doublet P, Letourneur F (2014) Defective lysosome maturation and Legionella pneumophila replication in Dictyostelium cells mutant for the Arf GAP ACAP-A. J Cell Sci 127:4702–4713

    Article  Google Scholar 

  7. Haridas V, Ranjbar S, Vorobjev IA, Goldfeld AE, Barteneva NS (2017) Imaging flow cytometry analysis of intracellular pathogens. Methods 112:91–104

    Article  CAS  Google Scholar 

  8. Barteneva NS, Fasler-Kan E, Vorobjev IA (2012) Imaging flow cytometry: coping with heterogeneity in biological systems. J Histochem Cytochem 60:723–733

    Article  CAS  Google Scholar 

  9. Basiji DA (2016) Principles of Amnis imaging flow cytometry. Methods Mol Biol 1389:13–21

    Article  Google Scholar 

  10. Wasylnka JA, Moore MM (2002) Uptake of Aspergillus fumigatus conidia by phagocytic and nonphagocytic cells in vitro: quantitation using strains expressing green fluorescent protein. Infect Immun 70:3156–3163

    Article  CAS  Google Scholar 

  11. Bertuzzi M, Schrettl M, Alcazar-Fuoli L et al (2014) The pH-responsive PacC transcription factor of Aspergillus fumigatus governs epithelial entry and tissue invasion during pulmonary aspergillosis. PLoS Pathog 10:e1004413

    Article  Google Scholar 

  12. Han X, Yu R, Zhen D, Tao S, Schmidt M, Han L (2011) β-1,3-Glucan-induced host phospholipase D activation is involved in Aspergillus fumigatus internalization into type II human pneumocyte A549 cells. PLoS One 6:e21468

    Article  CAS  Google Scholar 

  13. Wasylnka JA, Moore MM (2003) Aspergillus fumigatus conidia survive and germinate in acidic organelles of A549 epithelial cells. J Cell Sci 116:1579–1587

    Article  CAS  Google Scholar 

  14. Oosthuizen JL, Gomez P, Ruan J, Hackett TL, Moore MM, Knight DA, Tebbutt SJ (2011) Dual organism transcriptomics of airway epithelial cells interacting with conidia of Aspergillus fumigatus. PLoS One 6:e20527

    Article  CAS  Google Scholar 

  15. Gomez P, Hackett TL, Moore MM, Knight DA, Tebbutt SJ (2010) Functional genomics of human bronchial epithelial cells directly interacting with conidia of Aspergillus fumigatus. BMC Genomics 11:358

    Article  Google Scholar 

  16. Osherov N (2012) Interaction of the pathogenic mold Aspergillus fumigatus with lung epithelial cells. Front Microbiol 3:346

    Article  Google Scholar 

  17. Sheppard DC, Filler SG (2014) Host cell invasion by medically important fungi. Cold Spring Harb Perspect Med 5:a019687

    Article  Google Scholar 

  18. Croft CA, Culibrk L, Moore MM, Tebbutt SJ (2016) Interactions of Aspergillus fumigatus conidia with airway epithelial cells: a critical review. Front Microbiol 7:472

    Article  Google Scholar 

  19. Liu H, Lee MJ, Solis NV, Phan QT, Swidergall M, Ralph B, Ibrahim AS, Sheppard DC, Filler SG (2016) Aspergillus fumigatus CalA binds to integrin α5β1 and mediates host cell invasion. Nat Microbiol 2:16211

    Article  CAS  Google Scholar 

  20. Chaudhary N, Datta K, Askin FB, Staab JF, Marr KA (2012) Cystic fibrosis transmembrane conductance regulator regulates epithelial cell response to Aspergillus and resultant pulmonary inflammation. Am J Respir Crit Care Med 185:301–310

    Article  CAS  Google Scholar 

  21. Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE, Tsien RY (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22:1567–1572

    Article  CAS  Google Scholar 

  22. Christian DA, Koshy AA, Reuter MA, Betts MR, Boothroyd JC, Hunter CA (2014) Use of transgenic parasites and host reporters to dissect events that promote interleukin-12 production during toxoplasmosis. Infect Immun 82:4056–4067

    Article  Google Scholar 

  23. Dupont CD, Christian DA, Selleck EM et al (2014) Parasite fate and involvement of infected cells in the induction of CD4+ and CD8+ T cell responses to Toxoplasma gondii. PLoS Pathog 10:e1004047

    Article  Google Scholar 

  24. Konradt C, Ueno N, Christian DA et al (2016) Endothelial cells are a replicative niche for entry of Toxoplasma gondii to the central nervous system. Nat Microbiol 1:16001

    Article  CAS  Google Scholar 

  25. Rizzetto L, Giovannini G, Bromley M, Bowyer P, Romani L, Cavalieri D (2013) Strain dependent variation of immune responses to A. fumigatus: definition of pathogenic species. PLoS One 8:e56651

    Article  CAS  Google Scholar 

  26. Pontecorvo G, Roper JA, Hemmons LM, Macdonald KD, Bufton AW (1953) The genetics of Aspergillus nidulans. Adv Genet 5:141–238

    Article  CAS  Google Scholar 

  27. Berkova N, Lair-Fulleringer S, Femenia F et al (2006) Aspergillus fumigatus conidia inhibit tumour necrosis factor- or Staurosporine-induced apoptosis in epithelial cells. Int Immunol 18:139–150

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants to Prof. Elaine M. Bignell (University of Manchester) from the Medical Research Council (G0501164, MR/L000822/1 and MR/M02010X/1), the Biotechnology and Biological Sciences Research Council (BB/G009619/1) and the Wellcome Trust (WT093596MA) and the Chelsea and Westminster Healthcare National Health Service Trust Charity, to M.B. from Imperial College London (Division of Investigative Sciences PhD Studentships) and Fungal Infection Trust and to E.M.B. and M.B. from a University of Manchester Medical Research Council Discovery Award (MC_PC_15072).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margherita Bertuzzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bertuzzi, M., Howell, G.J. (2021). Single-Cell Analysis of Fungal Uptake in Cultured Airway Epithelial Cells Using Differential Fluorescent Staining and Imaging Flow Cytometry. In: Bignell, E. (eds) Host-Fungal Interactions. Methods in Molecular Biology, vol 2260. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1182-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1182-1_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1181-4

  • Online ISBN: 978-1-0716-1182-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics