Skip to main content

SWATH-MS Protocols in Human Diseases

  • Protocol
  • First Online:
Shotgun Proteomics

Abstract

Identification of molecular biomarkers for human diseases is one of the most important disciplines in translational science as it helps to elucidate their origin and early progression. Thus, it is a key factor in better diagnosis, prognosis, and treatment. Proteomics can help to solve the problem of sample complexity when the most common primary sample specimens were analyzed: organic fluids of easy access. The latest developments in high-throughput and label-free quantitative proteomics (SWATH-MS), together with more advanced liquid chromatography, have enabled the analysis of large sample sets with the sensitivity and depth needed to succeed in this task. In this chapter, we show different sample processing methods (major protein depletion, digestion, etc.) and a micro LC-SWATH-MS protocol to identify/quantify several proteins in different types of samples (serum/plasma, saliva, urine, tears).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anjo SI, Santa C, Manadas B (2017) SWATH-MS as a tool for biomarker discovery: from basic research to clinical applications. Proteomics 17:3–4

    Article  CAS  Google Scholar 

  2. Aebersold R, Mann M (2016) Mass-spectrometric exploration of proteome structure and function. Nature 537:347–355

    Article  CAS  PubMed  Google Scholar 

  3. Darling AL, Uversky VN (2018) Intrinsic disorder and posttranslational modifications: the darker side of the biological dark matter. Front Genet 9:1–18

    Article  CAS  Google Scholar 

  4. FDA-NIH Biomarker Working Group (2016) BEST (Biomarkers, EndpointS, and other Tools) Resource. Food and Drug Administration, Silver Spring, MD

    Google Scholar 

  5. Füzéry AK, Levin J, Chan MM, Chan DW (2013) Translation of proteomic biomarkers into FDA approved cancer diagnostics: issues and challenges. Clin Proteomics 10:1

    Article  CAS  Google Scholar 

  6. Pavlou MP, Diamandis EP, Blasutig IM (2013) The long journey of cancer biomarkers from the bench to the clinic. Clin Chem 59:147–157

    Article  CAS  PubMed  Google Scholar 

  7. Anderson NL (2010) The clinical plasma proteome: a survey of clinical assays for proteins in plasma and serum. Clin Chem 56:177–185

    Article  CAS  PubMed  Google Scholar 

  8. Vidova V, Spacil Z (2017) A review on mass spectrometry-based quantitative proteomics: targeted and data independent acquisition. Anal Chim Acta 964:7–23

    Article  CAS  PubMed  Google Scholar 

  9. Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198–207

    Article  CAS  PubMed  Google Scholar 

  10. Hu A, Noble WS, Wolf-Yadlin A (2016) Technical advances in proteomics: new developments in data-independent acquisition. F1000Res 5:F1000 Faculty Rev-419

    Article  PubMed  PubMed Central  Google Scholar 

  11. Michalski A, Cox J, Mann M (2011) More than 100,000 detectable peptide species elute in single shotgun proteomics runs but the majority is inaccessible to data-dependent LC-MS/MS. J Proteome Res 10:1785–1793

    Article  CAS  PubMed  Google Scholar 

  12. Meyer JG, Schilling B (2017) Clinical applications of quantitative proteomics using targeted and untargeted data-independent acquisition techniques. Expert Rev Proteomics 14:419–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Doerr A (2014) DIA mass spectrometry. Nat Methods 12:35

    Article  CAS  Google Scholar 

  14. Wolf-Yadlin A, Hu A, Noble WS (2016) Technical advances in proteomics: new developments in data-independent acquisition. F1000Res 5:1–12

    CAS  Google Scholar 

  15. Kolbowski L, Bernhardt OM, Reiter L, Rappsilber J (2019) Data-independent acquisition improves quantitative cross-linking mass spectrometry. Mol Cell Proteomics 18:786–795

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gillet LC, Navarro P, Tate S, Röst H, Selevsek N, Reiter L, Bonner R, Aebersold R (2012) Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics 11:1–17

    Article  CAS  Google Scholar 

  17. Chapman JD, Goodlett DR, Masselon CD (2014) Multiplexed and data-independent tandem mass spectrometry for global proteome profiling. Mass Spectrom Rev 33:452–470

    Article  CAS  PubMed  Google Scholar 

  18. Kang Y, Burton L, Lau A, Tate S (2017) SWATH-ID: an instrument method which combines identification and quantification in a single analysis. Proteomics 17:e1500522

    Article  PubMed  CAS  Google Scholar 

  19. Lin Q, Tan HT, Chung MCM (2019) Mass spectrometry of proteins. Methods Mol Biol 1977:3–15

    Article  CAS  PubMed  Google Scholar 

  20. Shilov IV, Seymour SL, Patel AA, Loboda A, Tang WH, Keating SP, Hunter CL, Nuwaysir LM, Schaeffer DA (2007) The Paragon Algorithm, a next generation search engine that uses sequence temperature values and feature probabilities to identify peptides from tandem mass spectra. Mol Cell Proteomics 6:1638–1655

    Article  CAS  PubMed  Google Scholar 

  21. Röst HL, Aebersold R, Schubert OT (2017) Automated swath data analysis using targeted extraction of ion chromatograms. Methods Mol Biol 1550:289–307

    Article  PubMed  CAS  Google Scholar 

  22. Lin Q, Tan HT, Chung MCM (2019) Methods in molecular biology. Humana, New York, pp 3–15

    Google Scholar 

  23. Wang J, Pérez-Santiago J, Katz JE, Mallick P, Bandeira N (2010) Peptide identification from mixture tandem mass spectra. Mol Cell Proteomics 9:1476–1485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Parker SJ, Rost H, Rosenberger G, Collins BC, Malmström L, Amodei D, Venkatraman V, Raedschelders K, Van Eyk JE, Aebersold R (2015) Identification of a set of conserved eukaryotic internal retention time standards for data independent acquisition mass spectrometry. Mol Cell Proteomics 14:2800–2813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Holewinski RJ, Parker SJ, Matlock AD, Venkatraman V, Van Eyk JE (2016) Methods for SWATH™: data independent acquisition on triplet of mass spectrometers. Methods Mol Biol 1410:265–279

    Article  CAS  PubMed  Google Scholar 

  26. Ludwig C, Gillet L, Rosenberger G, Amon S, Collins BC, Aebersold R (2018) Data-independent acquisition-based SWATH - MS for quantitative proteomics: a tutorial. Mol Syst Biol 14:1–23

    Article  Google Scholar 

  27. Ahn SM, Simpson RJ (2007) Body fluid proteomics: prospects for biomarker discovery. Proteomics Clin Appl 1:1004–1015

    Article  CAS  PubMed  Google Scholar 

  28. Manuscript A (2010) Human body fluid proteome analysis. Proteomics 6:6326–6353

    Google Scholar 

  29. Csősz É, Kalló G, Márkus B, Deák E, Csutak A, Tőzsér J (2017) Quantitative body fluid proteomics in medicine—a focus on minimal invasiveness. J Proteomics 153:30–43

    Article  PubMed  CAS  Google Scholar 

  30. Humphrey SP, Williamson RT (2001) A review of saliva normal composition, flow, and function. J Prosthet Dent 85:162–169

    Article  CAS  PubMed  Google Scholar 

  31. De Almeida PDV, Grégio AMT, Machado MÂN, De Lima AAS, Azevedo LR (2008) Saliva composition and functions: a comprehensive review. J Contemp Dent Pract 9:072–080

    Article  Google Scholar 

  32. Schulz BL, Cooper-White J, Punyadeera CK (2013) Saliva proteome research: current status and future outlook. Crit Rev Biotechnol 33:246–259

    Article  CAS  PubMed  Google Scholar 

  33. Shaila M, Pai GP, Shetty P (2013) Salivary protein concentration, flow rate, buffer capacity and pH estimation: a comparative study among young and elderly subjects, both normal and with gingivitis and periodontitis. J Indian Soc Periodontol 17:42–46

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ventura TM d S, Ribeiro NR, Dionizio AS, Sabino IT, Buzalaf MAR (2018) Standardization of a protocol for shotgun proteomic analysis of saliva. J Appl Oral Sci 26:e20170561

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Wang K, Wang Y, Wang X, Ren Q, Han S, Ding L, Li Z, Zhou X, Li W, Zhang L (2018) Comparative salivary proteomics analysis of children with and without dental caries using the iTRAQ/MRM approach. J Transl Med 16:1–13

    Article  Google Scholar 

  36. Torabi M, Drahansky M, Paridah M, Moradbak A, Mohamed A, abdulwahab taiwo Owolabi F, Asniza M, Abdul Khalid SH (2016) We are IntechOpen, the world’s leading publisher of Open Access books Built by scientists, for scientists TOP 1 %, Intech, vol. i, no. tourism, p. 13

    Google Scholar 

  37. Jessie K, Hashim OH, Rahim ZHA (2008) Protein precipitation method for salivary proteins and rehydration buffer for two-dimensional electrophoresis. Biotechnology 7(4): 686–693

    Google Scholar 

  38. Wessel D, Flügge UI (1984) A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem 138:141–143

    Article  CAS  PubMed  Google Scholar 

  39. Fullard RJ, Snyder C (1990) Protein levels in nonstimulated and stimulated tears of normal human subjects. IOVS 31(6)

    Google Scholar 

  40. Tiffany JM (2003) Tears in health and disease. Eye 17:923–926

    Article  CAS  PubMed  Google Scholar 

  41. Zhou L, Zhao SZ, Koh SK, Chen L, Vaz C, Tanavde V, Li XR, Beuerman RW (2012) In-depth analysis of the human tear proteome. J Proteomics 75:3877–3885

    Article  CAS  PubMed  Google Scholar 

  42. Li N, Wang N, Zheng J, Liu XM, Lever OW, Erickson PM, Li L (2005) Characterization of human tear proteome using multiple proteomic analysis techniques. J Proteome Res 4:2052–2061

    Article  CAS  PubMed  Google Scholar 

  43. Green-Church KB, Nichols KK, Kleinholz NM, Zhang L, Nichols JJ (2008) Investigation of the human tear film proteome using multiple proteomic approaches. Mol Vis 14:456–470

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Ablamowicz AF, Nichols JJ (2017) Concentrations of MUC16 and MUC5AC using three tear collection methods. Mol Vis 23:529–537

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Lema I, Brea D, Rodríguez-González R, Díez-Feijoo E, Sobrino T (2010) Proteomic analysis of the tear film in patients with keratoconus. Mol Vis 16:2055–2061

    CAS  PubMed  PubMed Central  Google Scholar 

  46. de Souza GA, Godoy LMF, Mann M (2006) Identification of 491 proteins in the tear fluid proteome reveals a large number of proteases and protease inhibitors. Genome Biol 7(8):R72

    Article  PubMed  PubMed Central  Google Scholar 

  47. Nagaraj N, Mann M (2011) Quantitative analysis of the intra- and inter-individual variability of the normal urinary proteome. J Proteome Res 10:637–645

    Article  CAS  PubMed  Google Scholar 

  48. Adachi J, Kumar C, Zhang Y, Olsen JV, Mann M (2006) The human urinary proteome contains more than 1500 proteins, including a large proportion of membrane proteins. Genome Biol 7(9):R80

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. McDougal WS, William S (2012) Campbell-Walsh urology tenth edition review. Elsevier/Saunders, Philadelphia

    Google Scholar 

  50. Pusch W, Flocco MT, Leung SM, Thiele H, Kostrzewa M (2003) Mass spectrometry-based clinical proteomics. Pharmacogenomics 4:463–476

    Article  CAS  PubMed  Google Scholar 

  51. Kalantari S, Jafari A, Moradpoor R, Ghasemi E, Khalkhal E (2015) Human urine proteomics: analytical techniques and clinical applications in renal diseases. Int J Proteomics 2015:782798

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Wu J, Chen YD, Gu W (2010) Urinary proteomics as a novel tool for biomarker discovery in kidney diseases. J Zhejiang Univ Sci B 11:227–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shao C, Zhao M, Chen X, Sun H, Yang Y, Xiao X, Guo Z, Liu X, Lv Y, Chen X, Sun W, Wu D, Gao Y (2019) Comprehensive analysis of individual variation in the urinary proteome revealed significant gender differences. Mol Cell Proteomics 18:1110–1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhao M, Li M, Yang Y, Guo Z, Sun Y, Shao C, Li M, Sun W, Gao Y (2017) A comprehensive analysis and annotation of human normal urinary proteome. Sci Rep 7. https://doi.org/10.1038/s41598-017-03226-6

  55. Kong F-M, Zhao L, Wang L, Chen Y, Hu J, Fu X, Bai C, Wang L, Lawrence TS, Anscher MS, Dicker A, Okunieff P, Wang L, Chen Y, Hu J, Fu X (2017) Ensuring sample quality for blood biomarker studies in clinical trials: a multicenter international study for plasma and serum sample preparation. Transl Lung Cancer Res 6:625–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Arapidi G, Osetrova M, Ivanova O, Butenko I, Saveleva T, Pavlovich P, Anikanov N, Ivanov V, Govorun V (2018) Peptidomics dataset: blood plasma and serum samples of healthy donors fractionated on a set of chromatography sorbents. Data Brief 18:1204–1211

    Article  PubMed  PubMed Central  Google Scholar 

  57. Ignjatovic V, Geyer PE, Palaniappan K, Chaaban J, Omenn G, Baker M, Deutsch E, Schwenk J (2019) Mass spectrometry-based plasma proteomics: considerations from sample collection to achieving translational data. J Proteome Res 18(12):4085–4097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Geyer PE, Voytik E, Treit PV, Doll S, Kleinhempel A, Niu L, Müller JB, Buchholtz M, Bader JM, Teupser D, Holdt LM, Mann M (2019) Plasma Proteome Profiling to detect and avoid sample-related biases in biomarker studies. EMBO Mol Med 11:e10427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lin L, Zheng J, Yu Q, Chen W, Xing J, Chen C, Tian R (2018) High throughput and accurate serum proteome profiling by integrated sample preparation technology and single-run data independent mass spectrometry analysis. J Proteomics 174:9–16

    Article  CAS  PubMed  Google Scholar 

  60. Pietrowska M, Wlosowicz A, Gawin M, Widlak P (2019) Advances in experimental medicine and biology. Springer, New York, pp 57–76

    Google Scholar 

  61. Fernández C, Santos HM, Ruíz-Romero C, Blanco FJ, Capelo-Martínez JL (2011) A comparison of depletion versus equalization for reducing high-abundance proteins in human serum. Electrophoresis 32:2966–2974

    Article  PubMed  CAS  Google Scholar 

  62. Kay R, Barton C, Ratcliffe L, Matharoo-Ball B, Brown P, Roberts J, Teale P, Creaser C (2008) Enrichment of low molecular weight serum proteins using acetonitrile precipitation for mass spectrometry based proteomic analysis. Rapid Commun Mass Spectrom 22:3255–3260

    Article  CAS  PubMed  Google Scholar 

  63. Warder SE, Tucker LA, Strelitzer TJ, McKeegan EM, Meuth JL, Jung PM, Saraf A, Singh B, Lai-Zhang J, Gagne G, Rogers JC (2009) Reducing agent-mediated precipitation of high-abundance plasma proteins. Anal Biochem 387:184–193

    Article  CAS  PubMed  Google Scholar 

  64. He J, Huang M, Wang D, Zhang Z, Li G (2014) Magnetic separation techniques in sample preparation for biological analysis: a review. J Pharm Biomed Anal 101:84–101

    Article  CAS  PubMed  Google Scholar 

  65. Kishikawa N, Kuroda N (2014) Analytical techniques for the determination of biologically active quinones in biological and environmental samples. J Pharm Biomed Anal 87:261–270

    Article  CAS  PubMed  Google Scholar 

  66. Chen H, Deng C, Zhang X (2010) Synthesis of Fe3O4@SiO2@PMMA core-shell-shell magnetic microspheres for highly efficient enrichment of peptides and proteins for MALDI-ToF MS analysis. Angew Chem Int Ed 49:607–611

    Article  CAS  Google Scholar 

  67. Zhao M, Xie Y, Deng C, Zhang X (2014) Recent advances in the application of core-shell structured magnetic materials for the separation and enrichment of proteins and peptides. J Chromatogr A 1357:182–193

    Article  CAS  PubMed  Google Scholar 

  68. Kailasa SK, Wu H-F (2010) Surface modified silver selinide nanoparticles as extracting probes to improve peptide/protein detection via nanoparticles-based liquid phase microextraction coupled with MALDI mass spectrometry. Talanta 83:527–534

    Article  CAS  PubMed  Google Scholar 

  69. Shastri L, Kailasa SK, Wu HF (2010) Nanoparticle-single drop microextraction as multifunctional and sensitive nanoprobes: binary matrix approach for gold nanoparticles modified with (4-mercaptophenyliminomethyl)-2-methoxyphenol for peptide and protein analysis in MALDI-TOF MS. Talanta 81:1176–1182

    Article  CAS  PubMed  Google Scholar 

  70. Farokhzad OC, Langer R (2009) Impact of nanotechnology on drug delivery. ACS Nano 3:16–20

    Article  CAS  PubMed  Google Scholar 

  71. Hafner A, Lovrić J, Lak GP, Pepić I (2014) Nanotherapeutics in the EU: an overview on current state and future directions. Int J Nanomedicine 9:1005–1023

    Google Scholar 

  72. Akhavan O, Ghaderi E, Shahsavar M (2013) Graphene nanogrids for selective and fast osteogenic differentiation of human mesenchymal stem cells. Carbon 59:200–211

    Article  CAS  Google Scholar 

  73. Monopoli MP, Åberg C, Salvati A, Dawson KA (2012) Biomolecular coronas provide the biological identity of nanosized materials. Nat Nanotechnol 7:779–786

    Article  CAS  PubMed  Google Scholar 

  74. Mahmoudi M, Lynch I, Ejtehadi MR, Monopoli MP, Bombelli FB, Laurent S (2011) Protein−nanoparticle interactions: opportunities and challenges. Chem Rev 111:5610–5637

    Article  CAS  PubMed  Google Scholar 

  75. Caracciolo G (2015) Liposome-protein corona in a physiological environment: challenges and opportunities for targeted delivery of nanomedicines. Nanomedicine 11:543–557

    Article  CAS  PubMed  Google Scholar 

  76. Sakulkhu U, Maurizi L, Mahmoudi M, Motazacker M, Vries M, Gramoun A, Ollivier Beuzelin MG, Vallée JP, Rezaee F, Hofmann H (2014) Ex situ evaluation of the composition of protein corona of intravenously injected superparamagnetic nanoparticles in rats. Nanoscale 6:11439–11450

    Article  CAS  PubMed  Google Scholar 

  77. Wan S, Kelly PM, Mahon E, Stöckmann H, Rudd PM, Caruso F, Dawson KA, Yan Y, Monopoli MP (2015) The “sweet” side of the protein corona: effects of glycosylation on nanoparticle-cell interactions. ACS Nano 9:2157–2166

    Article  CAS  PubMed  Google Scholar 

  78. Hellstrand E, Lynch I, Andersson A, Drakenberg T, Dahlbäck B, Dawson KA, Linse S, Cedervall T (2009) Complete high-density lipoproteins in nanoparticle corona. FEBS J 276:3372–3381

    Article  CAS  PubMed  Google Scholar 

  79. Cedervall T, Lynch I, Lindman S, Berggård T, Thulin E, Nilsson H, Dawson KA, Linse S (2007) Understanding the nanoparticle-protein corona using methods to quntify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci U S A 104:2050–2055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mahmoudi M, Bertrand N, Zope H, Farokhzad OC (2016) Emerging understanding of the protein corona at the nano-bio interfaces. Nano Today 11:817–832

    Article  CAS  Google Scholar 

  81. Safavi-Sohi R, Maghari S, Raoufi M, Jalali SA, Hajipour MJ, Ghassempour A, Mahmoudi M (2016) Bypassing protein corona issue on active targeting: zwitterionic coatings dictate specific interactions of targeting moieties and cell receptors. ACS Appl Mater Interfaces 8:22808–22818

    Article  CAS  PubMed  Google Scholar 

  82. Monopoli MP, Walczyk D, Campbell A, Elia G, Lynch I, Baldelli Bombelli F, Dawson KA (2011) Physical−chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. J Am Chem Soc 133:2525–2534

    Article  CAS  PubMed  Google Scholar 

  83. Tenzer S, Docter D, Kuharev J, Musyanovych A, Fetz V, Hecht R, Schlenk F, Fischer D, Kiouptsi K, Reinhardt C, Landfester K, Schild H, Maskos M, Knauer SK, Stauber RH (2013) Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat Nanotechnol 8:772–781

    Article  CAS  PubMed  Google Scholar 

  84. Koh WL, Tham PH, Yu H, Leo HL, Yong Kah JC (2016) Aggregation and protein corona formation on gold nanoparticles affect viability and liver functions of primary rat hepatocytes. Nanomedicine (Lond) 11:2275–2287

    Article  CAS  Google Scholar 

  85. Walkey CD, Chan WCW (2012) Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem Soc Rev 41:2780–2799

    Article  CAS  PubMed  Google Scholar 

  86. Lundqvist M, Stigler J, Cedervall T, Berggård T, Flanagan MB, Lynch I, Elia G, Dawson K (2011) The evolution of the protein corona around nanoparticles: a test study. ACS Nano 5:7503–7509

    Article  CAS  PubMed  Google Scholar 

  87. Tenzer S, Docter D, Rosfa S, Wlodarski A, Kuharev J, Rekik A, Knauer SK, Bantz C, Nawroth T, Bier C, Sirirattanapan J, Mann W, Treuel L, Zellner R, Maskos M, Schild H, Stauber RH (2011) Nanoparticle size is a critical physicochemical determinant of the human blood plasma corona: a comprehensive quantitative proteomic analysis. ACS Nano 5:7155–7167

    Article  CAS  PubMed  Google Scholar 

  88. Laurent S, Ng EP, Thirifays C, Lakiss L, Goupil GM, Mintova S, Burtea C, Oveisi E, Hébert C, De Vries M, Motazacker MM, Rezaee F, Mahmoudi M (2013) Corona protein composition and cytotoxicity evaluation of ultra-small zeolites synthesized from template free precursor suspensions. Toxicol Res (Camb) 2:270–279

    Article  CAS  Google Scholar 

  89. Mahmoudi M, Monopoli MP, Rezaei M, Lynch I, Bertoli F, Mcmanus JJ, Dawson KA (2013) The protein corona mediates the impact of nanomaterials and slows amyloid beta fibrillation. Chembiochem 14:568–572

    Article  CAS  PubMed  Google Scholar 

  90. Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA (2008) Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci U S A 105:14265–14270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ehrenberg MS, Friedman AE, Finkelstein JN, Oberdörster G, McGrath JL (2009) The influence of protein adsorption on nanoparticle association with cultured endothelial cells. Biomaterials 30:603–610

    Article  CAS  PubMed  Google Scholar 

  92. Caracciolo G, Callipo L, De Sanctis SC, Cavaliere C, Pozzi D, Laganà A (2010) Surface adsorption of protein corona controls the cell internalization mechanism of DC-Chol-DOPE/DNA lipoplexes in serum. Biochim Biophys Acta Biomembr 1798:536–543

    Article  CAS  Google Scholar 

  93. Docter D, Bantz C, Westmeier D, Galla HJ, Wang Q, Kirkpatrick JC, Nielsen P, Maskos M, Stauber RH (2014) The protein corona protects against size- and dose-dependent toxicity of amorphous silica nanoparticles. Beilstein J Nanotechnol 5:1380–1392

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Mahmoudi M, Laurent S, Shokrgozar MA, Hosseinkhani M (2011) Toxicity evaluations of superparamagnetic iron oxide nanoparticles: cell “vision” versus physicochemical properties of nanoparticles. ACS Nano 5:7263–7276

    Article  CAS  PubMed  Google Scholar 

  95. Mahmoudi M, Saeedi-Eslami SN, Shokrgozar MA, Azadmanesh K, Hassanlou M, Kalhor HR, Burtea C, Rothen-Rutishauser B, Laurent S, Sheibani S, Vali H (2012) Cell “vision”: complementary factor of protein corona in nanotoxicology. Nanoscale 4:5461–5468

    Article  CAS  PubMed  Google Scholar 

  96. Zhang H, Burnum KE, Luna ML, Petritis BO, Kim JS, Qian WJ, Moore RJ, Heredia-Langner A, Webb-Robertson BJM, Thrall BD, Camp DG, Smith RD, Pounds JG, Liu T (2011) Quantitative proteomics analysis of adsorbed plasma proteins classifies nanoparticles with different surface properties and size. Proteomics 11:4569–4577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Caracciolo G, Pozzi D, Capriotti AL, Cavaliere C, Foglia P, Amenitsch H, Laganà A (2011) Evolution of the protein corona of lipid gene vectors as a function of plasma concentration. Langmuir 27:15048–15053

    Article  CAS  PubMed  Google Scholar 

  98. Laurent S, Burtea C, Thirifays C, Rezaee F, Mahmoudi M (2013) Significance of cell “observer” and protein source in nanobiosciences. J Colloid Interface Sci 392:431–445

    Article  CAS  PubMed  Google Scholar 

  99. Caracciolo G, Pozzi D, Capriotti AL, Cavaliere C, Piovesana S, La Barbera G, Amici A, Laganà A (2014) The liposome-protein corona in mice and humans and its implications for in vivo delivery. J Mater Chem B 2:7419–7428

    Article  CAS  PubMed  Google Scholar 

  100. Pozzi D, Caracciolo G, Digiacomo L, Colapicchioni V, Palchetti S, Capriotti AL, Cavaliere C, Zenezini Chiozzi R, Puglisi A, Laganà A (2015) The biomolecular corona of nanoparticles in circulating biological media. Nanoscale 7:13958–13966

    Article  CAS  PubMed  Google Scholar 

  101. Schöttler S, Klein K, Landfester K, Mailänder V (2016) Protein source and choice of anticoagulant decisively affect nanoparticle protein corona and cellular uptake. Nanoscale 8:5526–5536

    Article  PubMed  CAS  Google Scholar 

  102. Mahmoudi M, Abdelmonem AM, Behzadi S, Clement JH, Dutz S, Ejtehadi MR, Hartmann R, Kantner K, Linne U, Maffre P, Metzler S, Moghadam MK, Pfeiffer C, Rezaei M, Ruiz-Lozano P, Serpooshan V, Shokrgozar MA, Nienhaus GU, Parak WJ (2013) Temperature: the “ignored” factor at the NanoBio interface. ACS Nano 7:6555–6562

    Article  CAS  PubMed  Google Scholar 

  103. Dell’Orco D, Lundqvist M, Linse S, Cedervall T (2014) Mathematical modeling of the protein corona: implications for nanoparticulate delivery systems. Nanomedicine 9:851–858

    Article  PubMed  CAS  Google Scholar 

  104. Smith RA, Andrews KS, Brooks D, Fedewa SA, Manassaram-Baptiste D, Saslow D, Brawley OW, Wender RC (2018) Cancer screening in the United States, 2018: a review of current American Cancer Society guidelines and current issues in cancer screening. CA Cancer J Clin 68:297–316

    Article  PubMed  Google Scholar 

  105. Hajipour MJ, Laurent S, Aghaie A, Rezaee F, Mahmoudi M (2014) Personalized protein coronas: a “key” factor at the nanobiointerface. Biomater Sci 2:1210–1221

    Article  CAS  PubMed  Google Scholar 

  106. Zheng T, Pierre-Pierre N, Yan X, Huo Q, Almodovar AJO, Valerio F, Rivera-Ramirez I, Griffith E, Decker DD, Chen S, Zhu N (2015) Gold nanoparticle-enabled blood test for early stage cancer detection and risk assessment. ACS Appl Mater Interfaces 7:6819–6827

    Article  CAS  PubMed  Google Scholar 

  107. Corbo C, Molinaro R, Tabatabaei M, Farokhzad OC, Mahmoudi M (2017) Personalized protein corona on nanoparticles and its clinical implications. Biomater Sci 5:378–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. del Pilar Chantada-Vázquez M, López AC, Bravo SB, Vázquez-Estévez S, Acea-Nebril B, Núñez C (2019) Proteomic analysis of the bio-corona formed on the surface of (Au, Ag, Pt)-nanoparticles in human serum. Colloids Surf B Biointerfaces 177:141–148

    Article  PubMed  CAS  Google Scholar 

  109. del Pilar Chantada-Vázquez M, López AC, Vence MG, Vázquez-Estévez S, Acea-Nebril B, Calatayud DG, Jardiel T, Bravo SB, Núñez C (2020) Proteomic investigation on bio-corona of Au, Ag and Fe nanoparticles for the discovery of triple negative breast cancer serum protein biomarkers. J Proteomics 212:103581

    Article  PubMed  CAS  Google Scholar 

  110. Zheng J, Zhou C, Yu M, Liu J (2012) Different sized luminescent gold nanoparticles. Nanoscale 4:4073–4083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. López-Cortés R, Oliveira E, Núñez C, Lodeiro C, Páez de la Cadena M, Fdez-Riverola F, López-Fernández H, Reboiro-Jato M, Glez-Peña D, Luis Capelo J, Santos HM (2012) Fast human serum profiling through chemical depletion coupled to gold-nanoparticle-assisted protein separation. Talanta 100:239–245

    Article  PubMed  CAS  Google Scholar 

  112. Bastús NG, Merkoçi F, Piella J, Puntes V (2014) Synthesis of highly monodisperse citrate-stabilized silver nanoparticles of up to 200 nm: kinetic control and catalytic properties. Chem Mater 26:2836–2846

    Article  CAS  Google Scholar 

  113. Wu GW, He SB, Peng HP, Deng HH, Liu AL, Lin XH, Xia XH, Chen W (2014) Citrate-capped platinum nanoparticle as a smart probe for ultrasensitive mercury sensing. Anal Chem 86:10955–10960

    Article  CAS  PubMed  Google Scholar 

  114. Lu AH, Salabas EL, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46:1222–1244

    Article  CAS  Google Scholar 

  115. Hermida-Nogueira L, Barrachina MN, Izquierdo I, García-Vence M, Lacerenza S, Bravo S, Castrillo A, García Á (2020) Proteomic analysis of extracellular vesicles derived from platelet concentrates treated with Mirasol® identifies biomarkers of platelet storage lesion. J Proteomics 210:103529

    Article  CAS  PubMed  Google Scholar 

  116. Bonzon-Kulichenko E, Pérez-Hernández D, Núñez E, Martínez-Acedo P, Navarro P, Trevisan-Herraz M, Ramos MDC, Sierra S, Martínez-Martínez S, Ruiz-Meana M, Miró-Casas E, García-Dorado D, Redondo JM, Burgos JS, Vázquez J (2011) A robust method for quantitative high-throughput analysis of proteomes by 18O labeling. Mol Cell Proteomics 10:M110.003335

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Perez-Hernandez D, Gutiérrez-Vázquez C, Jorge I, López-Martín S, Ursa A, Sánchez-Madrid F, Vázquez J, Yáñez-Mó M (2013) The intracellular interactome of tetraspanin-enriched microdomains reveals their function as sorting machineries toward exosomes. J Biol Chem 288:11649–11661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Shevchenko A, Wilm M, Vorm O, Jensen ON, Podtelejnikov AV, Neubauer G, Mortensen P, Mann M (1996) A strategy for identifying gel-separated proteins in sequence databases by MS alone. Biochem Soc Trans 24:893–896

    Article  CAS  PubMed  Google Scholar 

  119. Schilling B, Gibson BW, Hunter CL (2018) Management. Manage Entrep:15–38

    Google Scholar 

  120. Bereman MS (2015) Tools for monitoring system suitability in LC MS/MS centric proteomic experiments. Proteomics 15:891–902

    Article  CAS  PubMed  Google Scholar 

  121. Bruderer R, Bernhardt OM, Gandhi T, Reiter L (2016) High-precision iRT prediction in the targeted analysis of data-independent acquisition and its impact on identification and quantitation. Proteomics 16:2246–2256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Röst HL, Aebersold R, Schubert OT (2017) Management. Manage Entrep 1550:15–38

    Google Scholar 

  123. Lam H, Aebersold R (2011) Building and searching tandem mass (MS/MS) spectral libraries for peptide identification in proteomics. Methods 54:424–431

    Article  CAS  PubMed  Google Scholar 

  124. Zi J, Zhang S, Zhou R, Zhou B, Xu S, Hou G, Tan F, Wen B, Wang Q, Lin L, Liu S (2014) Expansion of the ion library for mining SWATH-MS data through fractionation proteomics. Anal Chem 86:7242–7246

    Article  CAS  PubMed  Google Scholar 

  125. Lam H (2012) Spectral library searching for peptide identification in proteomics. Stat Interface 5:39–46

    Article  Google Scholar 

  126. Schubert OT, Gillet LC, Collins BC, Navarro P, Rosenberger G, Wolski WE, Lam H, Amodei D, Mallick P, Maclean B, Aebersold R (2015) Building high-quality assay libraries for targeted analysis of SWATH MS data. Nat Protoc 10:426–441

    Article  CAS  PubMed  Google Scholar 

  127. Deutsch EW, Perez-riverol Y, Chalkley RJ, Wilhelm M, Sachsenberg T, Walzer M, Käll L, Delanghe B, Schymanski EL, Wilmes P, Dorfer V, Kuster B (2019) Expanding the use of spectral libraries in proteomics. J Proteome Res 17:4051–4060

    Article  CAS  Google Scholar 

  128. Escher C, Reiter L, Maclean B, Ossola R, Herzog F, Maccoss MJ, Rinner O (2014) Using iRT, a normalized retention time for more targeted measurement of peptides. Proteomics 12:1111–1121

    Article  CAS  Google Scholar 

  129. Manadas B, Mendes VM, English J, Dunn MJ (2010) Peptide fractionation in proteomics approaches. Expert Rev Proteomics 7:655–663

    Article  CAS  PubMed  Google Scholar 

  130. Bekker-Jensen DB, Kelstrup CD, Batth TS, Larsen SC, Haldrup C, Bramsen JB, Sørensen KD, Høyer S, Ørntoft TF, Andersen CL, Nielsen ML, Olsen JV (2017) An optimized shotgun strategy for the rapid generation of comprehensive human proteomes. Cell Syst 4:587–599.e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Barkovits K, Pacharra S, Pfeiffer K, Steinbach S, Eisenacher M, Marcus K, Uszkoreit J (2019) Reproducibility, specificity and accuracy of relative quantification using spectral library-based data-independent acquisition. Mol Cell Proteomics 2019:mcp.RA119.001714

    Google Scholar 

  132. Navarro P, Kuharev J, Gillet LC, Bernhardt OM, MacLean B, Röst HL, Tate SA, Tsou CC, Reiter L, Distler U, Rosenberger G, Perez-Riverol Y, Nesvizhskii AI, Aebersold R, Tenzer S (2016) A multicenter study benchmarks software tools for label-free proteome quantification. Nat Biotechnol 34:1130–1136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. MacLean B, Tomazela DM, Shulman N, Chambers M, Finney GL, Frewen B, Kern R, Tabb DL, Liebler DC, MacCoss MJ (2010) Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26:966–968

    Google Scholar 

  134. Räst HL, Rosenberger G, Navarro P, Gillet L, Miladinoviä SM, Schubert OT, OpenSWATH enables automated, targeted analysis of data-independent acquisition MS data. Nat Biotechnol 32:219–223

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cristina Núñez or Susana B. Bravo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chantada-Vázquez, M.d.P., García Vence, M., Serna, A., Núñez, C., Bravo, S.B. (2021). SWATH-MS Protocols in Human Diseases. In: Carrera, M., Mateos, J. (eds) Shotgun Proteomics. Methods in Molecular Biology, vol 2259. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1178-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1178-4_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1177-7

  • Online ISBN: 978-1-0716-1178-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics