Skip to main content

Viral PDZ Binding Motifs Influence Cell Behavior Through the Interaction with Cellular Proteins Containing PDZ Domains

  • Protocol
  • First Online:
PDZ Mediated Interactions

Abstract

Viruses have evolved to interact with their hosts. Some viruses such as human papilloma virus, dengue virus, SARS-CoV, or influenza virus encode proteins including a PBM that interact with cellular proteins containing PDZ domains. There are more than 400 cellular protein isoforms with these domains in the human genome, indicating that viral PBMs have a high potential to influence the behavior of the cell. In this review we analyze the most relevant cellular processes known to be affected by viral PBM–cellular PDZ interactions including the establishment of cell–cell interactions and cell polarity, the regulation of cell survival and apoptosis and the activation of the immune system. Special attention has been provided to coronavirus PBM conservation throughout evolution and to the role of the PBMs of human coronaviruses SARS-CoV and MERS-CoV in pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gerek ZN, Keskin O, Ozkan SB (2009) Identification of specificity and promiscuity of PDZ domain interactions through their dynamic behavior. Proteins 77:796–811

    Article  CAS  PubMed  Google Scholar 

  2. Kennedy MB (1995) Origin of PDZ (DHR, GLGF) domains. Trends Biochem Sci 20:350

    Article  CAS  PubMed  Google Scholar 

  3. Ponting CP (1997) Evidence for PDZ domains in bacteria, yeast, and plants. Protein Sci 6:464–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Luck K, Charbonnier S, Trave G (2012) The emerging contribution of sequence context to the specificity of protein interactions mediated by PDZ domains. FEBS Lett 586:2648–2661

    Article  CAS  PubMed  Google Scholar 

  5. Nourry C, Grant SG, Borg JP (2003) PDZ domain proteins: plug and play! Sci STKE 2003:RE7

    Article  PubMed  Google Scholar 

  6. Ye F, Zhang M (2013) Structures and target recognition modes of PDZ domains: recurring themes and emerging pictures. Biochem J 455:1–14

    Article  CAS  PubMed  Google Scholar 

  7. Subbaiah VK, Kranjec C, Thomas M, Banks L (2011) PDZ domains: the building blocks regulating tumorigenesis. Biochem J 439:195–205

    Article  CAS  PubMed  Google Scholar 

  8. Gallardo R, Ivarsson Y, Schymkowitz J, Rousseau F, Zimmermann P (2010) Structural diversity of PDZ-lipid interactions. Chembiochem 11:456–467

    Article  CAS  PubMed  Google Scholar 

  9. Hillier BJ, Christopherson KS, Prehoda KE, Bredt DS, Lim WA (1999) Unexpected modes of PDZ domain scaffolding revealed by structure of nNOS-syntrophin complex. Science 284:812–815

    Article  CAS  PubMed  Google Scholar 

  10. Harris BZ, Lim WA (2001) Mechanism and role of PDZ domains in signaling complex assembly. J Cell Sci 114:3219–3231

    Article  CAS  PubMed  Google Scholar 

  11. Hung AY, Sheng M (2002) PDZ domains: structural modules for protein complex assembly. J Biol Chem 277:5699–5702

    Article  CAS  PubMed  Google Scholar 

  12. Munz M, Hein J, Biggin PC (2012) The role of flexibility and conformational selection in the binding promiscuity of PDZ domains. PLoS Comput Biol 8:e1002749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lenfant N, Polanowska J, Bamps S, Omi S, Borg JP, Reboul J (2010) A genome-wide study of PDZ-domain interactions in C. elegans reveals a high frequency of non-canonical binding. BMC Genomics 11:671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bhattacharya S, Dai Z, Li J, Baxter S, Callaway DJ, Cowburn D, Bu Z (2010) A conformational switch in the scaffolding protein NHERF1 controls autoinhibition and complex formation. J Biol Chem 285:9981–9994

    Article  CAS  PubMed  Google Scholar 

  15. Remaut H, Waksman G (2006) Protein-protein interaction through beta-strand addition. Trends Biochem Sci 31:436–444

    Article  CAS  PubMed  Google Scholar 

  16. James CD, Roberts S (2016) Viral interactions with PDZ domain-containing proteins-an oncogenic trait? Pathogens 5:8

    Article  PubMed Central  CAS  Google Scholar 

  17. Javier RT, Rice AP (2011) Emerging theme: cellular PDZ proteins as common targets of pathogenic viruses. J Virol 85:11544–11556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kiyono T, Hiraiwa A, Fujita M, Hayashi Y, Akiyama T, Ishibashi M (1997) Binding of high-risk human papillomavirus E6 oncoproteins to the human homologue of the Drosophila discs large tumor suppressor protein. Proc Natl Acad Sci U S A 94:11612–11616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rousset R, Fabre S, Desbois C, Bantignies F, Jalinot P (1998) The C-terminus of the HTLV-1 tax oncoprotein mediates interaction with the PDZ domain of cellular proteins. Oncogene 16:643–654

    Article  CAS  PubMed  Google Scholar 

  20. Hu B, Li S, Zhang Z, Xie S, Hu Y, Huang X, Zheng Y (2016) HCV NS4B targets scribble for proteasome-mediated degradation to facilitate cell transformation. Tumour Biol 37:12387–12396

    Article  CAS  PubMed  Google Scholar 

  21. Melik W, Ellencrona K, Wigerius M, Hedstrom C, Elvang A, Johansson M (2012) Two PDZ binding motifs within NS5 have roles in Tick-borne encephalitis virus replication. Virus Res 169:54–62

    Article  CAS  PubMed  Google Scholar 

  22. Obenauer JC, Denson J, Mehta PK, Su X, Mukatira S, Finkelstein DB, Xu X, Wang J, Ma J, Fan Y, Rakestraw KM, Webster RG, Hoffmann E, Krauss S, Zheng J, Zhang Z, Naeve CW (2006) Large-scale sequence analysis of avian influenza isolates. Science 311:1576–1580

    Article  CAS  PubMed  Google Scholar 

  23. Jimenez-Guardeño JM, Nieto-Torres JL, DeDiego ML, Regla-Nava JA, Fernandez-Delgado R, Castaño-Rodriguez C, Enjuanes L (2014) The PDZ-binding motif of severe acute respiratory syndrome coronavirus envelope protein is a determinant of viral pathogenesis. PLoS Pathog 10:e1004320

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Handa Y, Durkin CH, Dodding MP, Way M (2013) Vaccinia virus F11 promotes viral spread by acting as a PDZ-containing scaffolding protein to bind myosin-9A and inhibit RhoA signaling. Cell Host Microbe 14:51–62

    Article  CAS  PubMed  Google Scholar 

  25. Zihni C, Mills C, Matter K, Balda MS (2016) Tight junctions: from simple barriers to multifunctional molecular gates. Nat Rev Mol Cell Biol 17:564–580

    Article  CAS  PubMed  Google Scholar 

  26. Javier R, Raska K Jr, Macdonald GJ, Shenk T (1991) Human adenovirus type 9-induced rat mammary tumors. J Virol 65:3192–3202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Thomas DL, Schaack J, Vogel H, Javier R (2001) Several E4 region functions influence mammary tumorigenesis by human adenovirus type 9. J Virol 75:557–568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Javier R, Raska K Jr, Shenk T (1992) Requirement for the adenovirus type 9 E4 region in production of mammary tumors. Science 257:1267–1271

    Article  CAS  PubMed  Google Scholar 

  29. Lee SS, Glaunsinger B, Mantovani F, Banks L, Javier RT (2000) Multi-PDZ domain protein MUPP1 is a cellular target for both adenovirus E4-ORF1 and high-risk papillomavirus type 18 E6 oncoproteins. J Virol 74:9680–9693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Glaunsinger BA, Weiss RS, Lee SS, Javier R (2001) Link of the unique oncogenic properties of adenovirus type 9 E4-ORF1 to a select interaction with the candidate tumor suppressor protein ZO-2. EMBO J 20:5578–5586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Glaunsinger BA, Lee SS, Thomas M, Banks L, Javier R (2000) Interactions of the PDZ-protein MAGI-1 with adenovirus E4-ORF1 and high-risk papillomavirus E6 oncoproteins. Oncogene 19:5270–5280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Latorre IJ, Roh MH, Frese KK, Weiss RS, Margolis B, Javier RT (2005) Viral oncoprotein-induced mislocalization of select PDZ proteins disrupts tight junctions and causes polarity defects in epithelial cells. J Cell Sci 118:4283–4293

    Article  CAS  PubMed  Google Scholar 

  33. Storrs CH, Silverstein SJ (2007) PATJ, a tight junction-associated PDZ protein, is a novel degradation target of high-risk human papillomavirus E6 and the alternatively spliced isoform 18 E6. J Virol 81:4080–4090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kranjec C, Banks L (2011) A systematic analysis of human papillomavirus (HPV) E6 PDZ substrates identifies MAGI-1 as a major target of HPV type 16 (HPV-16) and HPV-18 whose loss accompanies disruption of tight junctions. J Virol 85:1757–1764

    Article  CAS  PubMed  Google Scholar 

  35. Ivanov AI, Young C, Den Beste K, Capaldo CT, Humbert PO, Brennwald P, Parkos CA, Nusrat A (2010) Tumor suppressor scribble regulates assembly of tight junctions in the intestinal epithelium. Am J Pathol 176:134–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Stucke VM, Timmerman E, Vandekerckhove J, Gevaert K, Hall A (2007) The MAGUK protein MPP7 binds to the polarity protein hDlg1 and facilitates epithelial tight junction formation. Mol Biol Cell 18:1744–1755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Golebiewski L, Liu H, Javier RT, Rice AP (2011) The avian influenza virus NS1 ESEV PDZ binding motif associates with Dlg1 and scribble to disrupt cellular tight junctions. J Virol 85:10639–10648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ellencrona K, Syed A, Johansson M (2009) Flavivirus NS5 associates with host-cell proteins zonula occludens-1 (ZO-1) and regulating synaptic membrane exocytosis-2 (RIMS2) via an internal PDZ binding mechanism. Biol Chem 390:319–323

    Article  CAS  PubMed  Google Scholar 

  39. Ebnet K, Kummer D, Steinbacher T, Singh A, Nakayama M, Matis M (2018) Regulation of cell polarity by cell adhesion receptors. Semin Cell Dev Biol 81:2–12

    Article  CAS  PubMed  Google Scholar 

  40. Butler MT, Wallingford JB (2017) Planar cell polarity in development and disease. Nat Rev Mol Cell Biol 18:375–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schneeberger K, Roth S, Nieuwenhuis EES, Middendorp S (2018) Intestinal epithelial cell polarity defects in disease: lessons from microvillus inclusion disease. Dis Model Mech 11:dmm031088. https://doi.org/10.1242/dmm.031088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fischer E, Legue E, Doyen A, Nato F, Nicolas JF, Torres V, Yaniv M, Pontoglio M (2006) Defective planar cell polarity in polycystic kidney disease. Nat Genet 38:21–23

    Article  CAS  PubMed  Google Scholar 

  43. Medina E, Lemmers C, Lane-Guermonprez L, Le Bivic A (2002) Role of the Crumbs complex in the regulation of junction formation in Drosophila and mammalian epithelial cells. Biol Cell 94:305–313

    Article  CAS  PubMed  Google Scholar 

  44. Yamanaka T, Horikoshi Y, Suzuki A, Sugiyama Y, Kitamura K, Maniwa R, Nagai Y, Yamashita A, Hirose T, Ishikawa H, Ohno S (2001) PAR-6 regulates aPKC activity in a novel way and mediates cell-cell contact-induced formation of the epithelial junctional complex. Genes Cells 6:721–731

    Article  CAS  PubMed  Google Scholar 

  45. Yamanaka T, Ohno S (2008) Role of Lgl/Dlg/scribble in the regulation of epithelial junction, polarity and growth. Front Biosci 13:6693–6707

    Article  CAS  PubMed  Google Scholar 

  46. Nakagawa S, Huibregtse JM (2000) Human scribble (Vartul) is targeted for ubiquitin-mediated degradation by the high-risk papillomavirus E6 proteins and the E6AP ubiquitin-protein ligase. Mol Cell Biol 20:8244–8253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Stephens R, Lim K, Portela M, Kvansakul M, Humbert PO, Richardson HE (2018) The scribble cell polarity module in the regulation of cell signaling in tissue development and tumorigenesis. J Mol Biol 430:3585–3612

    Article  CAS  PubMed  Google Scholar 

  48. Arpin-Andre C, Mesnard JM (2007) The PDZ domain-binding motif of the human T cell leukemia virus type 1 tax protein induces mislocalization of the tumor suppressor hScrib in T cells. J Biol Chem 282:33132–33141

    Article  CAS  PubMed  Google Scholar 

  49. Peres E, Blin J, Ricci EP, Artesi M, Hahaut V, Van den Broeke A, Corbin A, Gazzolo L, Ratner L, Jalinot P, Duc Dodon M (2018) PDZ domain-binding motif of tax sustains T-cell proliferation in HTLV-1-infected humanized mice. PLoS Pathog 14:e1006933

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Teoh KT, Siu YL, Chan WL, Schluter MA, Liu CJ, Peiris JS, Bruzzone R, Margolis B, Nal B (2010) The SARS coronavirus E protein interacts with PALS1 and alters tight junction formation and epithelial morphogenesis. Mol Biol Cell 21:3838–3852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Li X, Yang H, Liu J, Schmidt MD, Gao T (2011) Scribble-mediated membrane targeting of PHLPP1 is required for its negative regulation of Akt. EMBO Rep 12:818–824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cherian MA, Baydoun HH, Al-Saleem J, Shkriabai N, Kvaratskhelia M, Green P, Ratner L (2015) Akt pathway activation by human T-cell leukemia virus type 1 tax oncoprotein. J Biol Chem 290:26270–26281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Thomas M, Laura R, Hepner K, Guccione E, Sawyers C, Lasky L, Banks L (2002) Oncogenic human papillomavirus E6 proteins target the MAGI-2 and MAGI-3 proteins for degradation. Oncogene 21:5088–5096

    Article  CAS  PubMed  Google Scholar 

  54. Liu H, Golebiewski L, Dow EC, Krug RM, Javier RT, Rice AP (2010) The ESEV PDZ-binding motif of the avian influenza A virus NS1 protein protects infected cells from apoptosis by directly targeting scribble. J Virol 84:11164–11174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Prehaud C, Wolff N, Terrien E, Lafage M, Megret F, Babault N, Cordier F, Tan GS, Maitrepierre E, Menager P, Chopy D, Hoos S, England P, Delepierre M, Schnell MJ, Buc H, Lafon M (2010) Attenuation of rabies virulence: takeover by the cytoplasmic domain of its envelope protein. Sci Signal 3:ra5

    Article  PubMed  CAS  Google Scholar 

  56. Terrien E, Chaffotte A, Lafage M, Khan Z, Prehaud C, Cordier F, Simenel C, Delepierre M, Buc H, Lafon M, Wolff N (2012) Interference with the PTEN-MAST2 interaction by a viral protein leads to cellular relocalization of PTEN. Sci Signal 5:ra58

    Article  PubMed  CAS  Google Scholar 

  57. Seo W, Prehaud C, Khan Z, Sabeta C, Lafon M (2017) Investigation of rabies virus glycoprotein carboxyl terminus as an in vitro predictive tool of neurovirulence. A 3R approach. Microbes Infect 19:476–484

    Article  CAS  PubMed  Google Scholar 

  58. Seo W, Servat A, Cliquet F, Akinbowale J, Prehaud C, Lafon M, Sabeta C (2017) Comparison of G protein sequences of South African street rabies viruses showing distinct progression of the disease in a mouse model of experimental rabies. Microbes Infect 19:485–491

    Article  CAS  PubMed  Google Scholar 

  59. Barreda D, Sanchez-Galindo M, Lopez-Flores J, Nava-Castro KE, Bobadilla K, Salgado-Aguayo A, Santos-Mendoza T (2018) PDZ proteins are expressed and regulated in antigen-presenting cells and are targets of influenza A virus. J Leukoc Biol 103:731–738

    Article  CAS  PubMed  Google Scholar 

  60. Platanias LC (2005) Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol 5:375–386

    Article  CAS  PubMed  Google Scholar 

  61. Werme K, Wigerius M, Johansson M (2008) Tick-borne encephalitis virus NS5 associates with membrane protein scribble and impairs interferon-stimulated JAK-STAT signalling. Cell Microbiol 10:696–712

    Article  CAS  PubMed  Google Scholar 

  62. King NJ, Getts DR, Getts MT, Rana S, Shrestha B, Kesson AM (2007) Immunopathology of flavivirus infections. Immunol Cell Biol 85:33–42

    Article  CAS  PubMed  Google Scholar 

  63. Fernandez-Garcia MD, Mazzon M, Jacobs M, Amara A (2009) Pathogenesis of flavivirus infections: using and abusing the host cell. Cell Host Microbe 5:318–328

    Article  CAS  PubMed  Google Scholar 

  64. Yilla M, Harcourt BH, Hickman CJ, McGrew M, Tamin A, Goldsmith CS, Bellini WJ, Anderson LJ (2005) SARS-coronavirus replication in human peripheral monocytes/macrophages. Virus Res 107:93–101

    Article  CAS  PubMed  Google Scholar 

  65. Zhou J, Chu H, Li C, Wong BH, Cheng ZS, Poon VK, Sun T, Lau CC, Wong KK, Chan JY, Chan JF, To KK, Chan KH, Zheng BJ, Yuen KY (2014) Active replication of Middle East respiratory syndrome coronavirus and aberrant induction of inflammatory cytokines and chemokines in human macrophages: implications for pathogenesis. J Infect Dis 209:1331–1342

    Article  CAS  PubMed  Google Scholar 

  66. Jimenez-Guardeno JM, Regla-Nava JA, Nieto-Torres JL, DeDiego ML, Castano-Rodriguez C, Fernandez-Delgado R, Perlman S, Enjuanes L (2015) Identification of the mechanisms causing reversion to virulence in an attenuated SARS-CoV for the design of a genetically stable vaccine. PLoS Pathog 11:e1005215

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Castaño-Rodriguez C, Honrubia JM, Gutiérrez-Álvarez J, DeDiego ML, Nieto-Torres JL, Jimenez-Guardeño JM, Regla-Nava JA, Fernandez-Delgado R, Verdia-Báguena C, Queralt-Martín M, Kochan G, Perlman S, Aguilella VM, Sola I, Enjuanes L (2018) Role of severe acute respiratory syndrome coronavirus viroporins E, 3a, and 8a in replication and pathogenesis. mBio 9:e2325–e2317

    Article  Google Scholar 

  68. Stodola JK, Dubois G, Le Coupanec A, Desforges M, Talbot PJ (2018) The OC43 human coronavirus envelope protein is critical for infectious virus production and propagation in neuronal cells and is a determinant of neurovirulence and CNS pathology. Virology 515:134–149

    Article  CAS  PubMed  Google Scholar 

  69. Florek D, Ehmann R, Kristen-Burmann C, Lemmermeyer T, Lochnit G, Ziebuhr J, Thiel HJ, Tekes G (2017) Identification and characterization of a Golgi retention signal in feline coronavirus accessory protein 7b. J Gen Virol 98:2017–2029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gorbalenya AE, Baker SC, Baric RS, de Groot RJ, Drosten C, Gulyaeva AA, Haagmans BL, Lauber C, Leontovich AM, Neuman BW, Penzar D, Perlman S, LLM P, Samborskiy DV, Sidorov IA, Sola I, Ziebuhr J, Coronaviridae Study Group of the International Committee on Taxonomy of V (2020) The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol 5:536–544

    Article  CAS  Google Scholar 

  71. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, Wang W, Song H, Huang B, Zhu N, Bi Y, Ma X, Zhan F, Wang L, Hu T, Zhou H, Hu Z, Zhou W, Zhao L, Chen J, Meng Y, Wang J, Lin Y, Yuan J, Xie Z, Ma J, Liu WJ, Wang D, Xu W, Holmes EC, Gao GF, Wu G, Chen W, Shi W, Tan W (2020) Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395:565–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lau SK, Woo PC, Li KS, Tsang AK, Fan RY, Luk HK, Cai JP, Chan KH, Zheng BJ, Wang M, Yuen KY (2015) Discovery of a novel coronavirus, China Rattus coronavirus HKU24, from Norway rats supports the murine origin of Betacoronavirus 1 and has implications for the ancestor of Betacoronavirus lineage A. J Virol 89:3076–3092

    Article  CAS  PubMed  Google Scholar 

  73. Neuman BW, Kiss G, Kunding AH, Bhella D, Baksh MF, Connelly S, Droese B, Klaus JP, Makino S, Sawicki SG, Siddell SG, Stamou DG, Wilson IA, Kuhn P, Buchmeier MJ (2011) A structural analysis of M protein in coronavirus assembly and morphology. J Struct Biol 174:11–22

    Article  CAS  PubMed  Google Scholar 

  74. DeDiego ML, Pewe L, Alvarez E, Rejas MT, Perlman S, Enjuanes L (2008) Pathogenicity of severe acute respiratory coronavirus deletion mutants in hACE-2 transgenic mice. Virology 376:379–389

    Article  CAS  PubMed  Google Scholar 

  75. Pfefferle S, Krahling V, Ditt V, Grywna K, Muhlberger E, Drosten C (2009) Reverse genetic characterization of the natural genomic deletion in SARS-coronavirus strain Frankfurt-1 open reading frame 7b reveals an attenuating function of the 7b protein in-vitro and in-vivo. Virol J 6:131

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. DeDiego ML, Nieto-Torres JL, Jimenez-Guardeño JM, Regla-Nava JA, Castaño-Rodriguez C, Fernandez-Delgado R, Usera F, Enjuanes L (2014) Coronavirus virulence genes with main focus on SARS-CoV envelope gene. Virus Res 194:124–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chung SH, Frese KK, Weiss RS, Prasad BV, Javier RT (2007) A new crucial protein interaction element that targets the adenovirus E4-ORF1 oncoprotein to membrane vesicles. J Virol 81:4787–4797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Razanskas R, Sasnauskas K (2010) Interaction of hepatitis B virus core protein with human GIPC1. Arch Virol 155:247–250

    Article  CAS  PubMed  Google Scholar 

  79. Hsu EC, Lin YC, Hung CS, Huang CJ, Lee MY, Yang SC, Ting LP (2007) Suppression of hepatitis B viral gene expression by protein-tyrosine phosphatase PTPN3. J Biomed Sci 14:731–744

    Article  CAS  PubMed  Google Scholar 

  80. Yu J, Li X, Wang Y, Li B, Li H, Li Y, Zhou W, Zhang C, Wang Y, Rao Z, Bartlam M, Cao Y (2011) PDlim2 selectively interacts with the PDZ binding motif of highly pathogenic avian H5N1 influenza A virus NS1. PLoS One 6:e19511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Tomaic V, Gardiol D, Massimi P, Ozbun M, Myers M, Banks L (2009) Human and primate tumour viruses use PDZ binding as an evolutionarily conserved mechanism of targeting cell polarity regulators. Oncogene 28:1–8

    Article  CAS  PubMed  Google Scholar 

  82. Suzuki T, Uchida-Toita M, Yoshida M (1999) Tax protein of HTLV-1 inhibits CBP/p300-mediated transcription by interfering with recruitment of CBP/p300 onto DNA element of E-box or p53 binding site. Oncogene 18:4137–4143

    Article  CAS  PubMed  Google Scholar 

  83. Wilson KC, Center DM, Cruikshank WW, Zhang Y (2003) Binding of HTLV-1 tax oncoprotein to the precursor of interleukin-16, a T cell PDZ domain-containing protein. Virology 306:60–67

    Article  CAS  PubMed  Google Scholar 

  84. Ohashi M, Sakurai M, Higuchi M, Mori N, Fukushi M, Oie M, Coffey RJ, Yoshiura K, Tanaka Y, Uchiyama M, Hatanaka M, Fujii M (2004) Human T-cell leukemia virus type 1 tax oncoprotein induces and interacts with a multi-PDZ domain protein, MAGI-3. Virology 320:52–62

    Article  CAS  PubMed  Google Scholar 

  85. Song C, Wang W, Li M, Liu Y, Zheng D (2009) Tax1 enhances cancer cell proliferation via Ras-Raf-MEK-ERK signaling pathway. IUBMB Life 61:685–692

    Article  CAS  PubMed  Google Scholar 

  86. Makokha GN, Takahashi M, Higuchi M, Saito S, Tanaka Y, Fujii M (2013) Human T-cell leukemia virus type 1 tax protein interacts with and mislocalizes the PDZ domain protein MAGI-1. Cancer Sci 104:313–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Blot V, Delamarre L, Perugi F, Pham D, Benichou S, Benarous R, Hanada T, Chishti AH, Dokhelar MC, Pique C (2004) Human Dlg protein binds to the envelope glycoproteins of human T-cell leukemia virus type 1 and regulates envelope mediated cell-cell fusion in T lymphocytes. J Cell Sci 117:3983–3993

    Article  CAS  PubMed  Google Scholar 

  88. Chen Q, Niu X, Xu Y, Wu J, Shi Y (2007) Solution structure and backbone dynamics of the AF-6 PDZ domain/Bcr peptide complex. Protein Sci 16:1053–1062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Belotti E, Polanowska J, Daulat AM, Audebert S, Thome V, Lissitzky JC, Lembo F, Blibek K, Omi S, Lenfant N, Gangar A, Montcouquiol M, Santoni MJ, Sebbagh M, Aurrand-Lions M, Angers S, Kodjabachian L, Reboul J, Borg JP (2013) The human PDZome: a gateway to PSD95-disc large-zonula occludens (PDZ)-mediated functions. Mol Cell Proteomics 12:2587–2603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Enjuanes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Castaño-Rodriguez, C., Honrubia, J.M., Gutiérrez-Álvarez, J., Sola, I., Enjuanes, L. (2021). Viral PDZ Binding Motifs Influence Cell Behavior Through the Interaction with Cellular Proteins Containing PDZ Domains. In: Borg, JP. (eds) PDZ Mediated Interactions. Methods in Molecular Biology, vol 2256. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1166-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1166-1_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1165-4

  • Online ISBN: 978-1-0716-1166-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics