Skip to main content

Assessing In Situ Phosphoinositide–Protein Interactions Through Fluorescence Proximity Ligation Assay in Cultured Cells

  • Protocol
  • First Online:
Phosphoinositides

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2251))

Abstract

Proximity ligation assay (PLA) is a well-established method for detecting in situ interactions between two epitopes with high resolution and specificity. Notably, PLA is not only a robust method for studying protein–protein interaction but also an efficient approach to characterize and validate protein posttranslational modifications (PTM) using one antibody against the core protein and one against the PTM residue. Therefore, it could be applied as a powerful approach to detect specific interactions of endogenous phosphoinositides and their binding proteins within cells. Importantly, we have specifically detected the PLA signal between PtdIns(4,5)P2 and its binding effector p53 in the nucleus. This cutting-edge method fully complements other conventional approaches for studying phosphoinositide–protein interactions and provides important localization signals and robust quantitation of the detected interactions. Here, we present the PLA fluorescence protocol for detecting in situ phosphoinositide–protein interactions in cultured cells and is semiquantitative for interactions that are regulated by cellular signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Weibrecht I, Leuchowius KJ, Clausson CM et al (2010) Proximity ligation assays: a recent addition to the proteomics toolbox. Expert Rev Proteomics 7(3):401–409. https://doi.org/10.1586/epr.10.10

    Article  CAS  PubMed  Google Scholar 

  2. Bagchi S, Fredriksson R, Wallen-Mackenzie A (2015) In situ proximity ligation assay (PLA). Methods Mol Biol 1318:149–159. https://doi.org/10.1007/978-1-4939-2742-5_15

    Article  PubMed  Google Scholar 

  3. Fredriksson S, Gullberg M, Jarvius J et al (2002) Protein detection using proximity-dependent DNA ligation assays. Nat Biotechnol 20(5):473–477. https://doi.org/10.1038/nbt0502-473

    Article  CAS  PubMed  Google Scholar 

  4. Iwabuchi E, Miki Y, Ono K et al (2017) In situ detection of estrogen receptor dimers in breast carcinoma cells in archival materials using proximity ligation assay (PLA). J Steroid Biochem 165:159–169. https://doi.org/10.1016/j.jsbmb.2016.05.022

    Article  CAS  Google Scholar 

  5. Thymiakou E, Episkopou V (2011) Detection of signaling effector-complexes downstream of BMP4 using in situ PLA, a proximity ligation assay. J Vis Exp 49:UNSP e2631. https://doi.org/10.3791/2631

    Article  CAS  Google Scholar 

  6. Karamouzis M, Dalagiorgou G, Georgopoulou U et al (2015) Proximity ligation assay (PLA) to identify HER2-negative breast carcinomas responding in HER-3 targeting agents. J Clin Oncol 33(15)

    Google Scholar 

  7. Bedzhov I, Stemmler MP (2015) Applying the proximity ligation assay (PLA) to mouse preimplantation embryos for identifying protein-protein interactions in situ. Methods Mol Biol 1233:57–64. https://doi.org/10.1007/978-1-4939-1789-1_6

    Article  PubMed  Google Scholar 

  8. Maszczak-Seneczko D, Sosicka P, Olczak T et al (2016) In situ proximity ligation assay (PLA) analysis of protein complexes formed between Golgi-resident, glycosylation-related transporters and transferases in adherent mammalian cell cultures. Methods Mol Biol 1496:133–143. https://doi.org/10.1007/978-1-4939-6463-5_11

    Article  CAS  PubMed  Google Scholar 

  9. Chen M, Zhang Y, Yu VC et al (2014) Isthmin targets cell-surface GRP78 and triggers apoptosis via induction of mitochondrial dysfunction. Cell Death Differ 21(5):797–810. https://doi.org/10.1038/cdd.2014.3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen M, Qiu T, Wu J et al (2018) Extracellular anti-angiogenic proteins augment an endosomal protein trafficking pathway to reach mitochondria and execute apoptosis in HUVECs. Cell Death Differ 25(11):1905–1920. https://doi.org/10.1038/s41418-018-0092-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen M, Choi S, Jung O et al (2019) The specificity of EGF-stimulated IQGAP1 scaffold towards the PI3K-Akt pathway is defined by the IQ3 motif. Sci Rep 9(1):9126. https://doi.org/10.1038/s41598-019-45671-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sehat B, Tofigh A, Lin Y et al (2010) SUMOylation mediates the nuclear translocation and signaling of the IGF-1 receptor. Sci Signal 3(108):ra10. https://doi.org/10.1126/scisignal.2000628

    Article  CAS  PubMed  Google Scholar 

  13. Choi S, Chen M, Cryns VL et al (2019) A nuclear phosphoinositide kinase complex regulates p53. Nat Cell Biol 21(4):462–475. https://doi.org/10.1038/s41556-019-0297-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kalasova I, Faberova V, Kalendova A et al (2016) Tools for visualization of phosphoinositides in the cell nucleus. Histochem Cell Biol 145(4):485–496. https://doi.org/10.1007/s00418-016-1409-8

    Article  CAS  PubMed  Google Scholar 

  15. Chen M, Wen T, Horn HT et al (2020) The nuclear phosphoinositide response to stress. Cell Cycle 19(3):268–289. https://doi.org/10.1080/15384101.2019.1711316

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A. Anderson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chen, M., Horn, H.T., Wen, T., Cryns, V.L., Anderson, R.A. (2021). Assessing In Situ Phosphoinositide–Protein Interactions Through Fluorescence Proximity Ligation Assay in Cultured Cells. In: Botelho, R.J. (eds) Phosphoinositides. Methods in Molecular Biology, vol 2251. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1142-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1142-5_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1141-8

  • Online ISBN: 978-1-0716-1142-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics