Skip to main content

Optical Approaches for Modulating mGlu Receptor Activity

  • Protocol
  • First Online:
Metabotropic Glutamate Receptor Technologies

Part of the book series: Neuromethods ((NM,volume 164))

  • 315 Accesses

Abstract

The metabotropic glutamate (mGlu) receptor family plays a diverse role in cellular function. However, differentiation of the specific contributions of individual mGlu subtypes has traditionally relied on pharmacological approaches, which have proven difficult due to many factors including inadequate selectivity for specific receptor subtypes, a lack of discernment in receptor modulation across different cell types, and a lack of spatial and temporal precision over control of receptor activation or inactivation. In this chapter, we review three newly developed approaches that have attempted to circumvent these issues. These approaches include the use of selective photoactivatable mGlu ligands, optogenetic activation of light-sensitive chimeric rhodopsin/mGlu receptors (OptoXRs), and optogenetic modulation of mGlu membrane expression. We hypothesize that these novel methods for targeting mGlu receptors will provide new insight into the roles of individual receptor subtypes in specific cell functions in both normal and disease states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Niswender CM, Conn PJ (2010) Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu Rev Pharmacol Toxicol 50:295–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ferraguti F, Shigemoto R (2006) Metabotropic glutamate receptors. Cell Tissue Res 326:483–504

    Article  CAS  PubMed  Google Scholar 

  3. Rondard P, Pin J (2015) Dynamics and modulation of metabotropic glutamate receptors. Curr Opin Pharmacol 20C:95–101

    Article  CAS  Google Scholar 

  4. Doherty AJ, Palmer MJ, Henley JM et al (1997) (RS)-2-chloro-5-hydroxyphenylglycine (CHPG) activates mGlu5, but not mGlu1, receptors expressed in CHO cells and potentiates NMDA responses in the hippocampus. Neuropharmacology 36:265–267

    Article  CAS  PubMed  Google Scholar 

  5. Kammermeier PJ (2012) The orthosteric agonist 2-chloro-5-hydroxyphenylglycine activates mGluR5 and mGluR1 with similar efficacy and potency. BMC Pharmacol 12:6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Leach K, Gregory KJ (2017) Molecular insights into allosteric modulation of class C G protein-coupled receptors. Pharmacol Res 116:105–118

    Article  CAS  PubMed  Google Scholar 

  7. Lindsley CW, Emmitte KA, Hopkins CR et al (2016) Practical strategies and concepts in GPCR allosteric modulator discovery: recent advances with metabotropic glutamate receptors. Chem Rev 116:6707–6741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rook JM, Noetzel MJ, Pouliot WA et al (2013) Unique signaling profiles of positive allosteric modulators of metabotropic glutamate receptor subtype 5 determine differences in in vivo activity. Biol Psychiatry 73:501–509

    Article  CAS  PubMed  Google Scholar 

  9. O’Leary DM, Movsesyan V, Vicini S et al (2000) Selective mGluR5 antagonists MPEP and SIB-1893 decrease NMDA or glutamate-mediated neuronal toxicity through actions that reflect NMDA receptor antagonism. Br J Pharmacol 131:1429–1437

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gasparini F, Lingenhohl K, Stoehr N et al (1999) 2-methyl-6-(phenylethynyl)-pyridine (MPEP), a potent, selective and systemically active mGlu5 receptor antagonist. Neuropharmacology 38:1493–1503

    Article  CAS  PubMed  Google Scholar 

  11. Salt TE, Binns KE, Turner JP et al (1999) Antagonism of the mGlu5 agonist 2-chloro-5-hydroxyphenylglycine by the novel selective mGlu5 antagonist 6-methyl-2-(phenylethynyl)-pyridine (MPEP) in the thalamus. Br J Pharmacol 127:1057–1059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mathiesen JM, Svendsen N, Brauner-Osborne H et al (2003) Positive allosteric modulation of the human metabotropic glutamate receptor 4 (hmGluR4) by SIB-1893 and MPEP. Br J Pharmacol 138:1026–1030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Heidbreder CA, Bianchi M, Lacroix LP et al (2003) Evidence that the metabotropic glutamate receptor 5 antagonist MPEP may act as an inhibitor of the norepinephrine transporter in vitro and in vivo. Synapse 50:269–276

    Article  CAS  PubMed  Google Scholar 

  14. Kramer RH, Fortin DL, Trauner D (2009) New photochemical tools for controlling neuronal activity. Curr Opin Neurobiol 19:544–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Canepari M, Nelson L, Papageorgiou G et al (2001) Photochemical and pharmacological evaluation of 7-nitroindolinyl-and 4-methoxy-7-nitroindolinyl-amino acids as novel, fast caged neurotransmitters. J Neurosci Methods 112:29–42

    Article  CAS  PubMed  Google Scholar 

  16. Durand-de Cuttoli R, Chauhan PS, Petriz Reyes A et al (2020) Optofluidic control of rodent learning using cloaked caged glutamate. Proc Natl Acad Sci U S A 117:6831–6835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Melchiorri D, Cappuccio I, Ciceroni C et al (2007) Metabotropic glutamate receptors in stem/progenitor cells. Neuropharmacology 53:473–480

    Article  CAS  PubMed  Google Scholar 

  18. Julio-Pieper M, Flor PJ, Dinan TG et al (2011) Exciting times beyond the brain: metabotropic glutamate receptors in peripheral and non-neural tissues. Pharmacol Rev 63:35–58

    Article  CAS  PubMed  Google Scholar 

  19. Ferrigno A, Berardo C, Di Pasqua LG et al (2017) Localization and role of metabotropic glutamate receptors subtype 5 in the gastrointestinal tract. World J Gastroenterol 23:4500–4507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mudo G, Trovato-Salinaro A, Caniglia G et al (2007) Cellular localization of mGluR3 and mGluR5 mRNAs in normal and injured rat brain. Brain Res 1149:1–13

    Article  CAS  PubMed  Google Scholar 

  21. Panatier A, Robitaille R (2016) Astrocytic mGluR5 and the tripartite synapse. Neuroscience 323:29–34

    Article  CAS  PubMed  Google Scholar 

  22. Spampinato SF, Copani A, Nicoletti F et al (2018) Metabotropic glutamate receptors in glial cells: a new potential target for neuroprotection? Front Mol Neurosci 11:414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. D’Antoni S, Berretta A, Bonaccorso CM et al (2008) Metabotropic glutamate receptors in glial cells. Neurochem Res 33:2436–2443

    Article  CAS  PubMed  Google Scholar 

  24. Romano C, van den Pol AN, O’Malley KL (1996) Enhanced early developmental expression of the metabotropic glutamate receptor mGluR5 in rat brain: protein, mRNA splice variants, and regional distribution. J Comp Neurol 367:403–412

    Article  CAS  PubMed  Google Scholar 

  25. McQuail JA, Davis KN, Miller F et al (2013) Hippocampal Gaq/11 but not Gao-coupled receptors are altered in aging. Neuropharmacology 70:63–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Noda M (2016) Dysfunction of glutamate receptors in microglia may cause neurodegeneration. Curr Alzheimer Res 13:381–386

    Article  CAS  PubMed  Google Scholar 

  27. Teh JL, Chen S (2012) Glutamatergic signaling in cellular transformation. Pigment Cell Melanoma Res 25:331–342

    Article  CAS  PubMed  Google Scholar 

  28. Holmes SE, Girgenti MJ, Davis MT et al (2017) Altered metabotropic glutamate receptor 5 markers in PTSD: in vivo and postmortem evidence. Proc Natl Acad Sci U S A 114:8390–8395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kramer RH, Mourot A, Adesnik H (2013) Optogenetic pharmacology for control of native neuronal signaling proteins. Nat Neurosci 16:816–823

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lopez-Cano M, Font J, Llebaria A et al (2019) Optical modulation of metabotropic glutamate receptor type 5 in vivo using a photoactive drug. Methods Mol Biol 1947:351–359

    Article  PubMed  Google Scholar 

  31. Dong M, Babalhavaeji A, Samanta S et al (2015) Red-shifting azobenzene photoswitches for in vivo use. Acc Chem Res 48:2662–2670

    Article  CAS  PubMed  Google Scholar 

  32. Pittolo S, Gomez-Santacana X, Eckelt K et al (2014) An allosteric modulator to control endogenous G protein-coupled receptors with light. Nat Chem Biol 10:813–815

    Article  CAS  PubMed  Google Scholar 

  33. Rovira X, Trapero A, Pittolo S et al (2016) OptoGluNAM4.1, a photoswitchable allosteric antagonist for real-time control of mGlu4 receptor activity. Cell Chem Biol 23:929–934

    Article  CAS  PubMed  Google Scholar 

  34. Reiner A, Isacoff EY (2014) Photoswitching of cell surface receptors using tethered ligands. Methods Mol Biol 1148:45–68

    Article  CAS  PubMed  Google Scholar 

  35. Reiner A, Levitz J, Isacoff EY (2015) Controlling ionotropic and metabotropic glutamate receptors with light: principles and potential. Curr Opin Pharmacol 20:135–143

    Article  CAS  PubMed  Google Scholar 

  36. Levitz J, Pantoja C, Gaub B et al (2013) Optical control of metabotropic glutamate receptors. Nat Neurosci 16:507–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Levitz J, Broichhagen J, Leippe P et al (2017) Dual optical control and mechanistic insights into photoswitchable group II and III metabotropic glutamate receptors. Proc Natl Acad Sci U S A 114:E3546–E3E54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Broichhagen J, Damijonaitis A, Levitz J et al (2015) Orthogonal optical control of a G protein-coupled receptor with a SNAP-tethered photochromic ligand. ACS Cent Sci 1:383–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Acosta-Ruiz A, Gutzeit VA, Skelly MJ et al (2020) Branched photoswitchable tethered ligands enable ultra-efficient optical control and detection of G protein-coupled receptors in vivo. Neuron 105:446–463

    Article  CAS  PubMed  Google Scholar 

  40. Levitz J, Popescu AT, Reiner A et al (2016) A toolkit for orthogonal and in vivo optical manipulation of ionotropic glutamate receptors. Front Mol Neurosci 9:2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Britt JP, Bonci A (2013) Optogenetic interrogations of the neural circuits underlying addiction. Curr Opin Neurobiol 23:539–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Stuber GD, Britt JP, Bonci A (2012) Optogenetic modulation of neural circuits that underlie reward seeking. Biol Psychiatry 71:1061–1067

    Article  PubMed  Google Scholar 

  43. Cao ZFH, Burdakov D, Sarnyai Z (2011) Optogenetics: potentials for addiction research. Addict Biol 16:519–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kim JM, Hwa J, Garriga P et al (2005) Light-driven activation of beta 2-adrenergic receptor signaling by a chimeric rhodopsin containing the beta 2-adrenergic receptor cytoplasmic loops. Biochemistry 44:2284–2292

    Article  CAS  PubMed  Google Scholar 

  45. Airan RD, Thompson KR, Fenno LE et al (2009) Temporally precise in vivo control of intracellular signalling. Nature 458:1025–1029

    Article  CAS  PubMed  Google Scholar 

  46. Oh E, Maejima T, Liu C et al (2010) Substitution of 5-HT1A receptor signaling by a light-activated G protein-coupled receptor. J Biol Chem 285:30825–30836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Barish PA, Xu Y, Li J et al (2013) Design and functional evaluation of an optically active mu-opioid receptor. Eur J Pharmacol 705:42–48

    Article  CAS  PubMed  Google Scholar 

  48. Bailes HJ, Zhuang LY, Lucas RJ (2012) Reproducible and sustained regulation of Gas signalling using a metazoan opsin as an optogenetic tool. PLoS One 7:e30774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dhami GK, Ferguson SS (2006) Regulation of metabotropic glutamate receptor signaling, desensitization and endocytosis. Pharmacol Ther 111:260–271

    Article  CAS  PubMed  Google Scholar 

  50. Mahato PK, Ramsakha N, Ojha P et al (2018) Group I metabotropic glutamate receptors (mGluRs): ins and outs. Adv Exp Med Biol 1112:163–175

    Article  CAS  PubMed  Google Scholar 

  51. Suh YH, Chang K, Roche KW (2018) Metabotropic glutamate receptor trafficking. Mol Cell Neurosci 91:10–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wend S, Wagner HJ, Muller K et al (2014) Optogenetic control of protein kinase activity in mammalian cells. ACS Synth Biol 3:280–285

    Article  CAS  PubMed  Google Scholar 

  53. Kim N, Kim JM, Lee M et al (2014) Spatiotemporal control of fibroblast growth factor receptor signals by blue light. Chem Biol 21:903–912

    Article  CAS  PubMed  Google Scholar 

  54. Tischer D, Weiner OD (2014) Illuminating cell signalling with optogenetic tools. Nat Rev Mol Cell Biol 15:551–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Beyer HM, Naumann S, Weber W et al (2015) Optogenetic control of signaling in mammalian cells. Biotechnol J 10:273–283

    Article  CAS  PubMed  Google Scholar 

  56. Takenouchi O, Yoshimura H, Ozawa T (2018) Unique roles of b-arrestin in GPCR trafficking revealed by photoinducible dimerizers. Sci Rep 8:677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang H, Westin L, Nong Y et al (2009) Norbin is an endogenous regulator of metabotropic glutamate receptor 5 signaling. Science 326:1554–1557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Calebiro D, Nikolaev VO, Persani L et al (2010) Signaling by internalized G-protein-coupled receptors. Trends Pharmacol Sci 31:221–228

    Article  CAS  PubMed  Google Scholar 

  59. Gobeil F, Fortier A, Zhu T et al (2006) G-protein-coupled receptors signalling at the cell nucleus: an emerging paradigm. Can J Physiol Pharmacol 84:287–297

    Article  CAS  PubMed  Google Scholar 

  60. Jalink K, Moolenaar WH (2010) G protein-coupled receptors: the inside story. BioEssays 32:13–16

    Article  CAS  PubMed  Google Scholar 

  61. Jong YJ, Sergin I, Purgert CA et al (2014) Location-dependent signaling of the group 1 metabotropic glutamate receptor mGlu5. Mol Pharmacol 86:774–785

    Article  PubMed  PubMed Central  Google Scholar 

  62. Boivin B, Vaniotis G, Allen BG et al (2008) G protein-coupled receptors in and on the cell nucleus: a new signaling paradigm? J Recept Signal Transduct Res 28:15–28

    Article  CAS  PubMed  Google Scholar 

  63. Lester HA, Miwa JM, Srinivasan R (2012) Psychiatric drugs bind to classical targets within early exocytotic pathways: therapeutic effects. Biol Psychiatry 72:907–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. O’Malley KL, Jong YJ, Gonchar Y et al (2003) Activation of metabotropic glutamate receptor mGlu5 on nuclear membranes mediates intranuclear Ca2+ changes in heterologous cell types and neurons. J Biol Chem 278:28210–28219

    Article  CAS  PubMed  Google Scholar 

  65. Shigemoto R, Mizuno N (2000) Metabotropic glutamate receptors—immunocytochemical and in situ hybridization analysis. In: Ottersen OP, Storm-Mathisen J (eds) Handbook of chemical Neuroanatomy: metabotropic glutamate receptors: immunocytochemical and in situ hybridization analyses. Elsevier, London, pp 63–98

    Google Scholar 

  66. Mitrano DA, Arnold C, Smith Y (2008) Subcellular and subsynaptic localization of group I metabotropic glutamate receptors in the nucleus accumbens of cocaine-treated rats. Neuroscience 154:653–666

    Article  CAS  PubMed  Google Scholar 

  67. Kell DB (2015) What would be the observable consequences if phospholipid bilayer diffusion of drugs into cells is negligible? Trends Pharmacol Sci 36:15–21

    Article  CAS  PubMed  Google Scholar 

  68. Buchwald P, Bodor N (1998) Octanol-water partition: searching for predictive models. Curr Med Chem 5:353–380

    Article  CAS  PubMed  Google Scholar 

  69. Dahan A, Miller JM (2012) The solubility-permeability interplay and its implications in formulation design and development for poorly soluble drugs. AAPS J 14:244–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Jong YJ, Kumar V, O’Malley KL (2009) Intracellular metabotropic glutamate receptor 5 (mGluR5) activates signaling cascades distinct from cell surface counterparts. J Biol Chem 284:35827–35838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kingston AE, Griffey K, Johnson MP et al (2002) Inhibition of group I metabotropic glutamate receptor responses in vivo in rats by a new generation of carboxyphenylglycine-like amino acid antagonists. Neurosci Lett 330:127–130

    Article  CAS  PubMed  Google Scholar 

  72. Cosford ND, Tehrani L, Roppe J et al (2003) 3-[(2-Methyl-1,3-thiazol-4-yl)ethynyl]-pyridine: a potent and highly selective metabotropic glutamate subtype 5 receptor antagonist with anxiolytic activity. J Med Chem 46:204–206

    Article  CAS  PubMed  Google Scholar 

  73. Zou MF, Cao J, Rodriguez AL et al (2011) Design and synthesis of substituted N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamides as positive allosteric modulators of the metabotropic glutamate receptor subtype 5. Bioorg Med Chem Lett 21:2650–2654

    Article  CAS  PubMed  Google Scholar 

  74. Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105

    Article  CAS  PubMed  Google Scholar 

  75. Jong YJ, Kumar V, Kingston AE et al (2005) Functional metabotropic glutamate receptors on nuclei from brain and primary cultured striatal neurons: role of transporters in delivering ligand. J Biol Chem 280:30469–30480

    Article  CAS  PubMed  Google Scholar 

  76. Jong YJ, Schwetye KE, O’Malley KL (2007) Nuclear localization of functional metabotropic glutamate receptor mGlu1 in HEK293 cells and cortical neurons: role in nuclear calcium mobilization and development. J Neurochem 101:458–469

    Article  CAS  PubMed  Google Scholar 

  77. Purgert CA, Izumi Y, Jong YJ et al (2014) Intracellular mGluR5 can mediate synaptic plasticity in the hippocampus. J Neurosci 34:4589–4598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kumar V, Fahey PG, Jong YJ et al (2012) Activation of intracellular metabotropic glutamate receptor 5 in striatal neurons leads to up-regulation of genes associated with sustained synaptic transmission including arc/Arg3.1 protein. J Biol Chem 287:5412–5425

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants R01 DA043172, R21 DA037741, and R01 AA025590 (MFO) and F32 AA027962 (JMLJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Foster Olive .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hood, L.E., Leyrer-Jackson, J.M., Olive, M.F. (2021). Optical Approaches for Modulating mGlu Receptor Activity. In: Olive, M.F., Burrows, B.T., Leyrer-Jackson, J.M. (eds) Metabotropic Glutamate Receptor Technologies. Neuromethods, vol 164. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1107-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1107-4_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1106-7

  • Online ISBN: 978-1-0716-1107-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics