Skip to main content

Antibody Printing Technologies

  • Protocol
  • First Online:
Antibody Arrays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2237))

Abstract

Antibody microarrays are routinely employed in the lab and in the clinic for studying protein expression, protein-protein, and protein-drug interactions. The microarray format reduces the size scale at which biological and biochemical interactions occur, leading to large reductions in reagent consumption and handling times while increasing overall experimental throughput. Specifically, antibody microarrays, as a platform, offer a number of different advantages over traditional techniques in the areas of drug discovery and diagnostics. While a number of different techniques and approaches have been developed for creating micro and nanoscale antibody arrays, issues relating to sensitivity, cost, and reproducibility persist. The aim of this review is to highlight current state-of the-art techniques and approaches for creating antibody arrays by providing latest accounts of the field while discussing potential future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pandey A, Mann M (2000) Proteomics to study genes and genomes. Nature 405(6788):837–846. https://doi.org/10.1038/35015709

    Article  CAS  PubMed  Google Scholar 

  2. Romanov V, Nikki Davidoff S, Miles AR, Grainger DW, Gale BK, Brooks BD (2014) A critical comparison of protein microarray fabrication technologies. Analyst 139(6):1303–1326. https://doi.org/10.1039/C3AN01577G

    Article  CAS  PubMed  Google Scholar 

  3. MacBeath G (2002) Protein microarrays and proteomics. Nat Genet 32(4):526–532. https://doi.org/10.1038/ng1037

    Article  CAS  PubMed  Google Scholar 

  4. Bertone P, Snyder M (2005) Advances in functional protein microarray technology. FEBS J 272(21):5400–5411. https://doi.org/10.1111/j.1742-4658.2005.04970.x

    Article  CAS  PubMed  Google Scholar 

  5. Angenendt P (2005) Progress in protein and antibody microarray technology. Drug Discov Today 10(7):503–511. https://doi.org/10.1016/S1359-6446(05)03392-1

    Article  CAS  PubMed  Google Scholar 

  6. Pavlickova P, Schneider EM, Hug H (2004) Advances in recombinant antibody microarrays. Clin Chim Acta 343(1):17–35. https://doi.org/10.1016/j.cccn.2004.01.009

    Article  CAS  PubMed  Google Scholar 

  7. Yu X, Petritis B, LaBaer J (2016) Advancing translational research with next-generation protein microarrays. Proteomics 16(8):1238–1250. https://doi.org/10.1002/pmic.201500374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lian W, Wu D, Lim DV, Jin S (2010) Sensitive detection of multiplex toxins using antibody microarray. Anal Biochem 401(2):271–279. https://doi.org/10.1016/j.ab.2010.02.040

    Article  CAS  PubMed  Google Scholar 

  9. Chen Z, Dodig-Crnković T, Schwenk JM, Tao S (2018) Current applications of antibody microarrays. Clin Proteomics 15:7. https://doi.org/10.1186/s12014-018-9184-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Stoevesandt O, Taussig MJ, He M (2009) Protein microarrays: high-throughput tools for proteomics. Expert Rev Proteomics 6(2):145–157. https://doi.org/10.1586/epr.09.2

    Article  CAS  PubMed  Google Scholar 

  11. Berrade L, Garcia AE, Camarero JA (2011) Protein microarrays: novel developments and applications. Pharm Res 28(7):1480–1499. https://doi.org/10.1007/s11095-010-0325-1

    Article  CAS  PubMed  Google Scholar 

  12. Hall DA, Ptacek J, Snyder M (2007) Protein microarray technology. Mech Ageing Dev 128(1):161–167. https://doi.org/10.1016/j.mad.2006.11.021

    Article  CAS  PubMed  Google Scholar 

  13. Spurrier B, Ramalingam S, Nishizuka S (2008) Reverse-phase protein lysate microarrays for cell signaling analysis. Nat Protoc 3(11):1796–1808. https://doi.org/10.1038/nprot.2008.179

    Article  PubMed  Google Scholar 

  14. Mueller C, Liotta LA, Espina V (2010) Reverse phase protein microarrays advance to use in clinical trials. Mol Oncol 4(6):461–481. https://doi.org/10.1016/j.molonc.2010.09.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Austin J, Holway AH (2011) Contact printing of protein microarrays. In: Korf U (ed) Protein microarrays: methods and protocols, Methods in molecular biology. Humana Press, Totowa, NJ, pp 379–394. https://doi.org/10.1007/978-1-61779-286-1_25

    Chapter  Google Scholar 

  16. Gupta S, Manubhai KP, Kulkarni V, Srivastava S (2016) An overview of innovations and industrial solutions in protein microarray technology. Proteomics 16(8):1297–1308. https://doi.org/10.1002/pmic.201500429

    Article  CAS  PubMed  Google Scholar 

  17. Clancy KFA, Dery S, Laforte V, Shetty P, Juncker D, Nicolau DV (2019) Protein microarray spots are modulated by patterning method, surface chemistry and processing conditions. Biosens Bioelectron 130:397–407. https://doi.org/10.1016/j.bios.2018.09.027

    Article  CAS  PubMed  Google Scholar 

  18. Pereiro I, Cors JF, Pané S, Nelson BJ, Kaigala GV (2019) Underpinning transport phenomena for the patterning of biomolecules. Chem Soc Rev 48(5):1236–1254. https://doi.org/10.1039/C8CS00852C

    Article  CAS  PubMed  Google Scholar 

  19. Yu X, Petritis B, Duan H, Xu D, LaBaer J (2018) Advances in cell-free protein array methods. Expert Rev Proteomics 15(1):1–11. https://doi.org/10.1080/14789450.2018.1415146

    Article  CAS  PubMed  Google Scholar 

  20. Barbulovic Nad I (2006) Bio-microarray fabrication techniques—a review. Crit Rev Biotechnol 26(4):237. https://doi.org/10.1080/07388550600978358

    Article  CAS  PubMed  Google Scholar 

  21. Kong F, Yuan L, Zheng YF, Chen W (2012) Automatic liquid handling for life science a critical review of the current state of the art. J Lab Autom 17(3):169–185. https://doi.org/10.1177/2211068211435302

    Article  CAS  PubMed  Google Scholar 

  22. Knauer M, Ivleva NP, Liu X, Niessner R, Haisch C (2010) Surface-enhanced Raman scattering-based label-free microarray readout for the detection of microorganisms. Anal Chem 82(7):2766–2772. https://doi.org/10.1021/ac902696y

    Article  CAS  PubMed  Google Scholar 

  23. Finetti C, Plavisch L, Chiari M (2016) Use of quantum dots as mass and fluorescence labels in microarray biosensing. Talanta 147:397–401. https://doi.org/10.1016/j.talanta.2015.10.012

    Article  CAS  PubMed  Google Scholar 

  24. Liu C, Meng F, Wang B, Zhang L, Cui X (2018) Plasmonic nanograting enhanced fluorescence for protein microarray analysis of carcinoembryonic antigen (CEA). Anal Methods 10(1):145–150. https://doi.org/10.1039/C7AY02232H

    Article  CAS  Google Scholar 

  25. Yao C, Wang T, Zhang B, He D, Na N, Ouyang J (2015) Screening of the binding of small molecules to proteins by desorption electrospray ionization mass spectrometry combined with protein microarray. J Am Soc Mass Spectrom 26(11):1950–1958. https://doi.org/10.1007/s13361-015-1221-z

    Article  CAS  PubMed  Google Scholar 

  26. Fishman D, Kuzmin I, Vilo J, Peterson H (2019) PAWER: protein array web ExploreR. bioRxiv 692905. https://doi.org/10.1101/692905

  27. Da Gama Duarte J, Goosen RW, Lawry PJ, Blackburn JM (2018) PMA: protein microarray analyser, a user-friendly tool for data processing and normalization. BMC Res Notes 11(1):156. https://doi.org/10.1186/s13104-018-3266-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kumar A, Whitesides GM (1993) Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol “Ink” followed by chemical etching. Appl Phys Lett 63(1):2002–2004. https://doi.org/10.1063/1.110628

    Article  CAS  Google Scholar 

  29. Bernard A, Delamarche E, Schmid H, Michel B, Bosshard HR, Biebuyck H (1998) Printing patterns of proteins. Langmuir 14(9):2225–2229. https://doi.org/10.1021/la980037l

    Article  CAS  Google Scholar 

  30. Kaufmann T, Jan Ravoo B (2010) Stamps, inks and substrates: polymers in microcontact printing. Polym Chem 1(4):371–387. https://doi.org/10.1039/B9PY00281B

    Article  CAS  Google Scholar 

  31. Kane RS, Takayama S, Ostuni E, Ingber DE, Whitesides GM (1999) Patterning proteins and cells using soft lithography. In: Williams DF (ed) The biomaterials: silver jubilee compendium. Elsevier Science, Oxford, pp 161–174. https://doi.org/10.1016/B978-008045154-1.50020-4

    Chapter  Google Scholar 

  32. Hyun J, Zhu Y, Liebmann-Vinson A, Beebe TP, Chilkoti A (2001) Microstamping on an activated polymer surface: patterning biotin and streptavidin onto common polymeric biomaterials. Langmuir 17(20):6358–6367. https://doi.org/10.1021/la010695x

    Article  CAS  Google Scholar 

  33. Renault JP, Bernard A, Juncker D, Michel B, Bosshard HR, Delamarche E (2002) Fabricating microarrays of functional proteins using affinity contact printing. Angew Chem Int Ed 41(13):2320–2323. https://doi.org/10.1002/1521-3773(20020703)41:13<2320::AID-ANIE2320>3.0.CO;2-Z

    Article  CAS  Google Scholar 

  34. Tan JL, Tien J, Chen CS (2002) Microcontact printing of proteins on mixed self-assembled monolayers. Langmuir 18(2):519–523. https://doi.org/10.1021/la011351+

    Article  CAS  Google Scholar 

  35. Zhang Z, Ma H, Hausner DB, Chilkoti A, Beebe TP (2005) Pretreatment of amphiphilic comb polymer surfaces dramatically affects protein adsorption. Biomacromolecules 6(6):3388–3396. https://doi.org/10.1021/bm050446d

    Article  CAS  PubMed  Google Scholar 

  36. Lin SC, Tseng FG, Huang HM, Chen Y-F, Tsai YC, Ho CE, Chieng CC (2004) Simultaneous immobilization of protein microarrays by a micro stamper with back-filling reservoir. Sens Actuators B Chem 99(1):174–185. https://doi.org/10.1016/S0925-4005(03)00554-9

    Article  CAS  Google Scholar 

  37. Ruiz SA, Chen CS (2007) Microcontact printing: a tool to pattern. Soft Matter 3(2):168–177. https://doi.org/10.1039/B613349E

    Article  CAS  Google Scholar 

  38. Wang Y, Goh SH, Bi X, Yang K-L (2009) Replication of DNA submicron patterns by combining nanoimprint lithography and contact printing. J Colloid Interface Sci 333(1):188–194. https://doi.org/10.1016/j.jcis.2009.02.010

    Article  CAS  PubMed  Google Scholar 

  39. Tien J, Nelson CM, Chen CS (2002) Fabrication of aligned microstructures with a single elastomeric stamp. Proc Natl Acad Sci 99(4):1758–1762. https://doi.org/10.1073/pnas.042493399

    Article  CAS  PubMed  Google Scholar 

  40. Desai RA, Khan MK, Gopal SB, Chen CS (2011) Subcellular spatial segregation of integrin subtypes by patterned multicomponent surfaces. Integr Biol 3(5):560–567. https://doi.org/10.1039/c0ib00129e

    Article  CAS  Google Scholar 

  41. Rodriguez NM, Desai RA, Trappmann B, Baker BM, Chen CS (2014) Micropatterned multicolor dynamically adhesive substrates to control cell adhesion and multicellular organization. Langmuir 30(5):1327–1335. https://doi.org/10.1021/la404037s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Juste-Dolz A, Avella-Oliver M, Puchades R, Maquieira A (2018) Indirect microcontact printing to create functional patterns of physisorbed antibodies. Sensors 18(9):3163. https://doi.org/10.3390/s18093163

    Article  CAS  Google Scholar 

  43. Li H-W, Muir BVO, Fichet G, Huck WTS (2003) Nanocontact printing: a route to sub-50-nm-scale chemical and biological patterning. Langmuir 19(6):1963–1965. https://doi.org/10.1021/la0269098

    Article  CAS  Google Scholar 

  44. MacNearney D, Mak B, Ongo G, Kennedy TE, Juncker D (2016) Nanocontact printing of proteins on physiologically soft substrates to study cell haptotaxis. Langmuir 32(50):13525–13533. https://doi.org/10.1021/acs.langmuir.6b03246

    Article  CAS  PubMed  Google Scholar 

  45. Alameddine R, Wahl A, Pi F, Bouzalmate K, Limozin L, Charrier A, Sengupta K (2017) Printing functional protein nanodots on soft elastomers: from transfer mechanism to cell mechanosensing. Nano Lett 17(7):4284–4290. https://doi.org/10.1021/acs.nanolett.7b01254

    Article  CAS  PubMed  Google Scholar 

  46. Lindner M, Tresztenyak A, Fülöp G, Jahr W, Prinz A, Prinz I, Danzl JG, Schütz GJ, Sevcsik E (2019) A fast and simple contact printing approach to generate 2D protein nanopatterns. Front Chem 6:655. https://doi.org/10.3389/fchem.2018.00655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ostuni E, Kane R, Chen CS, Ingber DE, Whitesides GM (2000) Patterning mammalian cells using elastomeric membranes. Langmuir 16(20):7811–7819. https://doi.org/10.1021/la000382m

    Article  CAS  Google Scholar 

  48. Pla-Roca M, Leulmi RF, Djambazian H, Sundararajan S, Juncker D (2010) Addressable nanowell arrays formed using reversibly sealable hybrid elastomer-metal stencils. Anal Chem 82(9):3848–3855. https://doi.org/10.1021/ac100335d

    Article  CAS  PubMed  Google Scholar 

  49. Masters T, Engl W, Weng ZL, Arasi B, Gauthier N, Viasnoff V (2012) Easy fabrication of thin membranes with through holes. Application to protein patterning. PLoS One 7(8):e44261. https://doi.org/10.1371/journal.pone.0044261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tan CP, Ri Seo B, Brooks DJ, Chandler EM, Craighead HG, Fischbach C (2009) Parylene peel-off arrays to probe the role of cell–cell interactions in tumour angiogenesis. Integr Biol 1(10):587–594. https://doi.org/10.1039/b908036h

    Article  CAS  Google Scholar 

  51. Huang M, Galarreta BC, Artar A, Adato R, Aksu S, Altug H (2012) Reusable nanostencils for creating multiple biofunctional molecular nanopatterns on polymer substrate. Nano Lett 12(9):4817–4822. https://doi.org/10.1021/nl302266u

    Article  CAS  PubMed  Google Scholar 

  52. Lum W, Gautam D, Chen J, Sagle LB (2019) Single molecule protein patterning using hole mask colloidal lithography. Nanoscale. https://doi.org/10.1039/C9NR05630K

  53. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442(7101):368–373. https://doi.org/10.1038/nature05058

    Article  CAS  PubMed  Google Scholar 

  54. Delamarche E, Bernard A, Schmid H, Michel B, Biebuyck H (1997) Patterned delivery of immunoglobulins to surfaces using microfluidic networks. Science 276(5313):779–781. https://doi.org/10.1126/science.276.5313.779

    Article  CAS  PubMed  Google Scholar 

  55. Delamarche E, Bernard A, Schmid H, Bietsch A, Michel B, Biebuyck H (1998) Microfluidic networks for chemical patterning of substrates: design and application to bioassays. J Am Chem Soc 120(3):500–508. https://doi.org/10.1021/ja973071f

    Article  CAS  Google Scholar 

  56. Bernard A, Michel B, Delamarche E (2001) Micromosaic immunoassays. Anal Chem 73(1):8–12. https://doi.org/10.1021/ac0008845

    Article  CAS  PubMed  Google Scholar 

  57. Huang B, Wu H, Kim S, Zare RN (2005) Coating of poly(Dimethylsiloxane) with n-dodecyl-β-d-maltoside to minimize nonspecific protein adsorption. Lab Chip 5(10):1005–1007. https://doi.org/10.1039/B509251E

    Article  CAS  PubMed  Google Scholar 

  58. Tong Z, Rajeev G, Guo K, Ivask A, McCormick S, Lombi E, Priest C, Voelcker NH (2018) Microfluidic cell microarray platform for high throughput analysis of particle–cell interactions. Anal Chem 90(7):4338–4347. https://doi.org/10.1021/acs.analchem.7b03079

    Article  CAS  PubMed  Google Scholar 

  59. Liu X, Li H, Jia W, Chen Z, Xu D (2017) Selection of aptamers based on a protein microarray integrated with a microfluidic chip. Lab Chip 17(1):178–185. https://doi.org/10.1039/C6LC01208F

    Article  CAS  Google Scholar 

  60. Natarajan S, Katsamba PS, Miles A, Eckman J, Papalia GA, Rich RL, Gale BK, Myszka DG (2008) Continuous-flow microfluidic printing of proteins for array-based applications including surface plasmon resonance imaging. Anal Biochem 373(1):141–146. https://doi.org/10.1016/j.ab.2007.07.035

    Article  CAS  PubMed  Google Scholar 

  61. Boesch AW, Miles AR, Chan YN, Osei-Owusu NY, Ackerman ME (2017) IgG Fc variant cross-reactivity between human and rhesus macaque FcγRs. mAbs 9(3):455–465. https://doi.org/10.1080/19420862.2016.1274845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Martin GD, Hoath SD, Hutchings IM (2008) Inkjet printing—the physics of manipulating liquid jets and drops. J Phys Conf Ser 105:012001. https://doi.org/10.1088/1742-6596/105/1/012001

    Article  CAS  Google Scholar 

  63. Derby B (2010) Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution. Annu Rev Mater Res 40(1):395–414. https://doi.org/10.1146/annurev-matsci-070909-104502

    Article  CAS  Google Scholar 

  64. McWilliam I, Kwan MC, Hall D (2011) Inkjet printing for the production of protein microarrays. In: Korf U (ed) Protein microarrays: methods and protocols, Methods in molecular biology. Humana Press, Totowa, NJ, pp 345–361. https://doi.org/10.1007/978-1-61779-286-1_23

    Chapter  Google Scholar 

  65. Setti L, Piana C, Bonazzi S, Ballarin B, Frascaro D, Fraleoni-Morgera A, Giuliani S (2004) Thermal inkjet technology for the microdeposition of biological molecules as a viable route for the realization of biosensors. Anal Lett 37(8):1559–1570. https://doi.org/10.1081/AL-120037587

    Article  CAS  Google Scholar 

  66. Klenkar G, Valiokas R, Lundström I, Tinazli A, Tampé R, Piehler J, Liedberg B (2006) Piezo dispensed microarray of multivalent chelating thiols for dissecting complex protein−protein interactions. Anal Chem 78(11):3643–3650. https://doi.org/10.1021/ac060024+

    Article  CAS  PubMed  Google Scholar 

  67. Delaney JT, Smith PJ, Schubert US (2009) Inkjet printing of proteins. Soft Matter 5(24):4866–4877. https://doi.org/10.1039/B909878J

    Article  CAS  Google Scholar 

  68. Hecht L, Rager K, Davidonis M, Weber P, Gauglitz G, Dietzel A (2019) Blister-actuated LIFT printing for multiparametric functionalization of paper-like biosensors. Micromachines 10(4):221. https://doi.org/10.3390/mi10040221

    Article  PubMed Central  Google Scholar 

  69. Deng Y, Zhu X-Y, Kienlen T, Guo A (2006) Transport at the air/water interface is the reason for rings in protein microarrays. J Am Chem Soc 128(9):2768–2769. https://doi.org/10.1021/ja057669w

    Article  CAS  PubMed  Google Scholar 

  70. Shigeta K, He Y, Sutanto E, Kang S, Le A-P, Nuzzo RG, Alleyne AG, Ferreira PM, Lu Y, Rogers JA (2012) Functional protein microarrays by electrohydrodynamic jet printing. Anal Chem 84(22):10012–10018. https://doi.org/10.1021/ac302463p

    Article  CAS  PubMed  Google Scholar 

  71. Park J-U, Lee JH, Paik U, Lu Y, Rogers JA (2008) Nanoscale patterns of oligonucleotides formed by electrohydrodynamic jet printing with applications in biosensing and nanomaterials assembly. Nano Lett 8(12):4210–4216. https://doi.org/10.1021/nl801832v

    Article  CAS  PubMed  Google Scholar 

  72. Ferraro P, Coppola S, Grilli S, Paturzo M, Vespini V (2010) Dispensing nano–pico droplets and liquid patterning by pyroelectrodynamic shooting. Nat Nanotechnol 5(6):429–435. https://doi.org/10.1038/nnano.2010.82

    Article  CAS  PubMed  Google Scholar 

  73. Bourim EM, Moon C-W, Lee S-W, Kyeong Yoo I (2006) Investigation of pyroelectric electron emission from monodomain lithium niobate single crystals. Phys B Condens Matter 383(2):171–182. https://doi.org/10.1016/j.physb.2006.02.034

    Article  CAS  Google Scholar 

  74. Juncker D, Schmid H, Delamarche E (2005) Multipurpose microfluidic probe. Nat Mater 4(8):622–628. https://doi.org/10.1038/nmat1435

    Article  CAS  PubMed  Google Scholar 

  75. Kaigala GV, Lovchik RD, Delamarche E (2012) Microfluidics in the “open space” for performing localized chemistry on biological interfaces. Angew Chem Int Ed 51:11224–11240. https://doi.org/10.1002/anie.201201798

    Article  CAS  Google Scholar 

  76. Autebert J, Cors JF, Taylor DP, Kaigala GV (2016) Convection-enhanced biopatterning with recirculation of hydrodynamically confined nanoliter volumes of reagents. Anal Chem 88(6):3235–3242. https://doi.org/10.1021/acs.analchem.5b04649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Taylor DP, Zeaf I, Lovchik RD, Kaigala GV (2016) Centimeter-scale surface interactions using hydrodynamic flow confinements. Langmuir 32(41):10537–10544. https://doi.org/10.1021/acs.langmuir.6b02983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Douvas A, Argitis P, Diakoumakos CD, Misiakos K, Dimotikali D, Kakabakos SE (2001) Photolithographic patterning of proteins with photoresists processable under biocompatible conditions. J Vac Sci Technol B 19(6):2820–2824. https://doi.org/10.1116/1.1408954

    Article  CAS  Google Scholar 

  79. Petrou PS, Chatzichristidi M, Douvas AM, Argitis P, Misiakos K, Kakabakos SE (2007) A biomolecule friendly photolithographic process for fabrication of protein microarrays on polymeric films coated on silicon chips. Biosens Bioelectron 22(9):1994–2002. https://doi.org/10.1016/j.bios.2006.08.036

    Article  CAS  PubMed  Google Scholar 

  80. Lam CN, Chang D, Olsen BD (2016) Protein nanopatterning. In: Zhang M, Naik RR, Dai L (eds) Carbon nanomaterials for biomedical applications, Springer series in biomaterials science and engineering. Springer International Publishing, Cham, pp 445–480. https://doi.org/10.1007/978-3-319-22861-7_14

    Chapter  Google Scholar 

  81. You C, Piehler J (2016) Functional protein micropatterning for drug design and discovery. Expert Opin Drug Discov 11(1):105–119. https://doi.org/10.1517/17460441.2016.1109625

    Article  CAS  PubMed  Google Scholar 

  82. Kim M, Choi J-C, Jung H-R, Katz JS, Kim M-G, Doh J (2010) Addressable micropatterning of multiple proteins and cells by microscope projection photolithography based on a protein friendly photoresist. Langmuir 26(14):12112–12118. https://doi.org/10.1021/la1014253

    Article  CAS  PubMed  Google Scholar 

  83. Machairioti F, Petrou P, Oh H-T, Lee J-K, Kakabakos S, Argitis P, Chatzichristidi M (2019) Bio-orthogonal fluorinated resist for biomolecules patterning applications. Colloids Surf B Biointerfaces 178:208–213. https://doi.org/10.1016/j.colsurfb.2019.03.006

    Article  CAS  PubMed  Google Scholar 

  84. Zakhidov AA, Lee J-K, Fong HH, DeFranco JA, Chatzichristidi M, Taylor PG, Ober CK, Malliaras GG (2008) Hydrofluoroethers as orthogonal solvents for the chemical processing of organic electronic materials. Adv Mater 20(18):3481–3484. https://doi.org/10.1002/adma.200800557

    Article  CAS  Google Scholar 

  85. Dhara MG, Banerjee S (2010) Fluorinated high-performance polymers: poly(arylene ether)s and aromatic polyimides containing trifluoromethyl groups. Prog Polym Sci 35(8):1022–1077. https://doi.org/10.1016/j.progpolymsci.2010.04.003

    Article  CAS  Google Scholar 

  86. Hengsakul M, Cass AEG (1996) Protein patterning with a photoactivatable derivative of biotin. Bioconjug Chem 7(2):249–254. https://doi.org/10.1021/bc960007z

    Article  CAS  PubMed  Google Scholar 

  87. Keppler A, Gendreizig S, Gronemeyer T, Pick H, Vogel H, Johnsson K (2003) A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat Biotechnol 21(1):86–89. https://doi.org/10.1038/nbt765

    Article  CAS  PubMed  Google Scholar 

  88. Zhou S, Metcalf KJ, Bugga P, Grant J, Mrksich M (2018) Photoactivatable reaction for covalent nanoscale patterning of multiple proteins. ACS Appl Mater Interfaces 10(47):40452–40459. https://doi.org/10.1021/acsami.8b16736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Schmidt RC, Healy KE (2009) Controlling biological interfaces on the nanometer length scale. J Biomed Mater Res A 90A(4):1252–1261. https://doi.org/10.1002/jbm.a.32501

    Article  CAS  Google Scholar 

  90. Chen Y (2015) Nanofabrication by electron beam lithography and its applications: a review. Microelectron Eng 135:57–72. https://doi.org/10.1016/j.mee.2015.02.042

    Article  CAS  Google Scholar 

  91. Kolodziej CM, Maynard HD (2012) Electron-beam lithography for patterning biomolecules at the micron and nanometer scale. Chem Mater 24(5):774–780. https://doi.org/10.1021/cm202669f

    Article  CAS  Google Scholar 

  92. Manfrinato VR, Stein A, Zhang L, Nam C-Y, Yager KG, Stach EA, Black CT (2017) Aberration-corrected electron beam lithography at the one nanometer length scale. Nano Lett 17(8):4562–4567. https://doi.org/10.1021/acs.nanolett.7b00514

    Article  CAS  PubMed  Google Scholar 

  93. Lau UY, Saxer SS, Lee J, Bat E, Maynard HD (2016) Direct write protein patterns for multiplexed cytokine detection from live cells using electron beam lithography. ACS Nano 10(1):723–729. https://doi.org/10.1021/acsnano.5b05781

    Article  CAS  PubMed  Google Scholar 

  94. Spallas JP, Silver CS, Muray LP (2006) Arrayed miniature electron beam columns for mask making. J Vac Sci Technol B 24(6):2892–2896. https://doi.org/10.1116/1.2395955

    Article  CAS  Google Scholar 

  95. Piner RD, Zhu J, Xu F, Hong S, Mirkin CA (1999) “Dip-Pen” nanolithography. Science 283(5402):661–663. https://doi.org/10.1126/science.283.5402.661

    Article  CAS  PubMed  Google Scholar 

  96. Salaita K, Wang Y, Mirkin CA (2007) Applications of dip-pen nanolithography. Nat Nanotechnol 2(3):145–155. https://doi.org/10.1038/nnano.2007.39

    Article  CAS  PubMed  Google Scholar 

  97. Liu G, Hirtz M, Fuchs H, Zheng Z (2019) Development of dip-pen nanolithography (DPN) and its derivatives. Small 15(21):1900564. https://doi.org/10.1002/smll.201900564

    Article  CAS  Google Scholar 

  98. Sekula-Neuner S, Maier J, Oppong E, Cato ACB, Hirtz M, Fuchs H (2012) Allergen arrays for antibody screening and immune cell activation profiling generated by parallel lipid dip-pen nanolithography. Small 8(4):585–591. https://doi.org/10.1002/smll.201101694

    Article  CAS  PubMed  Google Scholar 

  99. Sekula S, Fuchs J, Weg-Remers S, Nagel P, Schuppler S, Fragala J, Theilacker N, Franzreb M, Wingren C, Ellmark P et al (2008) Multiplexed lipid dip-pen nanolithography on subcellular scales for the templating of functional proteins and cell culture. Small 4(10):1785–1793. https://doi.org/10.1002/smll.200800949

    Article  CAS  PubMed  Google Scholar 

  100. Navikas V, Gavutis M, Rakickas T, Valiokas R (2019) Scanning probe-directed assembly and rapid chemical writing using nanoscopic flow of phospholipids. ACS Appl Mater Interfaces 11(31):28449–28460. https://doi.org/10.1021/acsami.9b07547

    Article  CAS  PubMed  Google Scholar 

  101. Wilson DL, Martin R, Hong S, Cronin-Golomb M, Mirkin CA, Kaplan DL (2001) Surface organization and nanopatterning of collagen by dip-pen nanolithography. Proc Natl Acad Sci 98(24):13660–13664. https://doi.org/10.1073/pnas.241323198

    Article  CAS  PubMed  Google Scholar 

  102. Lee SW, Oh B-K, Sanedrin RG, Salaita K, Fujigaya T, Mirkin CA (2006) Biologically active protein nanoarrays generated using parallel dip-pen nanolithography. Adv Mater 18(9):1133–1136. https://doi.org/10.1002/adma.200600070

    Article  CAS  Google Scholar 

  103. Senesi AJ, Rozkiewicz DI, Reinhoudt DN, Mirkin CA (2009) Agarose-assisted dip-pen nanolithography of oligonucleotides and proteins. ACS Nano 3(8):2394–2402. https://doi.org/10.1021/nn9005945

    Article  CAS  PubMed  Google Scholar 

  104. Salaita K, Wang Y, Fragala J, Vega RA, Liu C, Mirkin CA (2006) Massively parallel dip–pen nanolithography with 55 000-pen two-dimensional arrays. Angew Chem Int Ed 45(43):7220–7223. https://doi.org/10.1002/anie.200603142

    Article  CAS  Google Scholar 

  105. Huo F, Zheng Z, Zheng G, Giam LR, Zhang H, Mirkin CA (2008) Polymer pen lithography. Science 321(5896):1658–1660. https://doi.org/10.1126/science.1162193

    Article  CAS  PubMed  Google Scholar 

  106. Zheng Z, Daniel WL, Giam LR, Huo F, Senesi AJ, Zheng G, Mirkin CA (2009) Multiplexed protein arrays enabled by polymer pen lithography: addressing the inking challenge. Angew Chem Int Ed 48(41):7626–7629. https://doi.org/10.1002/anie.200902649

    Article  CAS  Google Scholar 

  107. Zhang J, Chen Y, Brook MA (2013) Facile functionalization of PDMS elastomer surfaces using thiol-ene click chemistry. Langmuir 29(40):12432–12442. https://doi.org/10.1021/la403425d

    Article  CAS  PubMed  Google Scholar 

  108. Wipff P-J, Majd H, Acharya C, Buscemi L, Meister J-J, Hinz B (2009) The covalent attachment of adhesion molecules to silicone membranes for cell stretching applications. Biomaterials 30(9):1781–1789. https://doi.org/10.1016/j.biomaterials.2008.12.022

    Article  CAS  PubMed  Google Scholar 

  109. Kurkuri MD, Al-Ejeh F, Yan Shi J, Palms D, Prestidge C, Griesser HJ, Brown MP, Thierry B (2011) Plasma functionalized PDMS microfluidic chips: towards point-of-care capture of circulating tumor cells. J Mater Chem 21(24):8841–8848. https://doi.org/10.1039/C1JM10317B

    Article  CAS  Google Scholar 

  110. Hosford J, Valles M, Krainer FW, Glieder A, Shin Wong L (2018) Parallelized biocatalytic scanning probe lithography for the additive fabrication of conjugated polymer structures. Nanoscale 10(15):7185–7193. https://doi.org/10.1039/C8NR01283K

    Article  CAS  PubMed  Google Scholar 

  111. Xu X, Yang Q, Cheung KM, Zhao C, Wattanatorn N, Belling JN, Abendroth JM, Slaughter LS, Mirkin CA, Andrews AM et al (2017) Polymer-pen chemical lift-off lithography. Nano Lett 17(5):3302–3311. https://doi.org/10.1021/acs.nanolett.7b01236

    Article  CAS  PubMed  Google Scholar 

  112. Cao HH, Nakatsuka N, Liao W-S, Serino AC, Cheunkar S, Yang H, Weiss PS, Andrews AM (2017) Advancing biocapture substrates via chemical lift-off lithography. Chem Mater 29(16):6829–6839. https://doi.org/10.1021/acs.chemmater.7b01970

    Article  CAS  Google Scholar 

  113. Chen C-Y, Wang C-M, Li H-H, Chan H-H, Liao W-S (2018) Wafer-scale bioactive substrate patterning by chemical lift-off lithography. Beilstein J Nanotechnol 9(1):311–320. https://doi.org/10.3762/bjnano.9.31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Lewis A, Kheifetz Y, Shambrodt E, Radko A, Khatchatryan E, Sukenik C (1999) Fountain pen nanochemistry: atomic force control of chrome etching. Appl Phys Lett 75(17):2689–2691. https://doi.org/10.1063/1.125120

    Article  CAS  Google Scholar 

  115. Yeshua T, Layani M, Dekhter R, Huebner U, Magdassi S, Lewis A (2018) Micrometer to 15 nm printing of metallic inks with fountain pen nanolithography. Small 14(1):1702324. https://doi.org/10.1002/smll.201702324

    Article  CAS  Google Scholar 

  116. Ramiya Ramesh Babu HK, Gheber LA (2018) Rapid assaying of miniaturized protein microarray. Sens Actuators B Chem 268:55–60. https://doi.org/10.1016/j.snb.2018.04.074

    Article  CAS  Google Scholar 

  117. Tsarfati-BarAd I, Sauer U, Preininger C, Gheber LA (2011) Miniaturized protein arrays: model and experiment. Biosens Bioelectron 26(9):3774–3781. https://doi.org/10.1016/j.bios.2011.02.030

    Article  CAS  PubMed  Google Scholar 

  118. Tsarfati-BarAd I, Gier K, Sauer U, Gheber LA (2019) An improved approach to use protein A for signal enhancement of miniaturized immunoarrays. Sens Actuators B Chem 284:289–295. https://doi.org/10.1016/j.snb.2018.12.153

    Article  CAS  Google Scholar 

  119. Taha H, Marks RS, Gheber LA, Rousso I, Newman J, Sukenik C, Lewis A (2003) Protein printing with an atomic force sensing nanofountainpen. Appl Phys Lett 83(5):1041–1043. https://doi.org/10.1063/1.1594844

    Article  CAS  Google Scholar 

  120. Meister A, Gabi M, Behr P, Studer P, Vörös J, Niedermann P, Bitterli J, Polesel-Maris J, Liley M, Heinzelmann H et al (2009) FluidFM: combining atomic force microscopy and nanofluidics in a universal liquid delivery system for single cell applications and beyond. Nano Lett 9(6):2501–2507. https://doi.org/10.1021/nl901384x

    Article  CAS  PubMed  Google Scholar 

  121. Saftics A, Türk B, Sulyok A, Nagy N, Gerecsei T, Szekacs I, Kurunczi S, Horvath R (2019) Biomimetic dextran-based hydrogel layers for cell micropatterning over large areas using the FluidFM BOT technology. Langmuir 35(6):2412–2421. https://doi.org/10.1021/acs.langmuir.8b03249

    Article  CAS  PubMed  Google Scholar 

  122. Guillaume-Gentil O, Rey T, Kiefer P, Ibáñez AJ, Steinhoff R, Brönnimann R, Dorwling-Carter L, Zambelli T, Zenobi R, Vorholt JA (2017) Single-cell mass spectrometry of metabolites extracted from live cells by fluidic force microscopy. Anal Chem 89(9):5017–5023. https://doi.org/10.1021/acs.analchem.7b00367

    Article  CAS  PubMed  Google Scholar 

  123. Wendel M, Kühn S, Lorenz H, Kotthaus JP, Holland M (1994) Nanolithography with an atomic force microscope for integrated fabrication of quantum electronic devices. Appl Phys Lett 65(14):1775–1777. https://doi.org/10.1063/1.112914

    Article  CAS  Google Scholar 

  124. Nuraje N, Banerjee IA, MacCuspie RI, Yu L, Matsui H (2004) Biological bottom-up assembly of antibody nanotubes on patterned antigen arrays. J Am Chem Soc 126(26):8088–8089. https://doi.org/10.1021/ja048617u

    Article  CAS  PubMed  Google Scholar 

  125. Zhao Z, Matsui H (2007) Accurate immobilization of antibody-functionalized peptide nanotubes on protein-patterned arrays by optimizing their ligand–receptor interactions. Small 3(8):1390–1393. https://doi.org/10.1002/smll.200700006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Zhao Z, Banerjee IA, Matsui H (2005) Simultaneous targeted immobilization of anti-human IgG-coated nanotubes and anti-mouse IgG-coated nanotubes on the complementary antigen-patterned surfaces via biological molecular recognition. J Am Chem Soc 127(25):8930–8931. https://doi.org/10.1021/ja051053p

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Tutkus M, Rakickas T, Kopu̅stas A, Ivanovaitė Š, Venckus O, Navikas V, Zaremba M, Manakova E, Valiokas R (2019) Fixed DNA molecule arrays for high-throughput single DNA–protein interaction studies. Langmuir 35(17):5921–5930. https://doi.org/10.1021/acs.langmuir.8b03424

    Article  CAS  PubMed  Google Scholar 

  128. Shi J, Chen J, Cremer PS (2008) Sub-100 nm patterning of supported bilayers by nanoshaving lithography. J Am Chem Soc 130(9):2718–2719. https://doi.org/10.1021/ja077730s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Xu S, Liu G (1997) Nanometer-scale fabrication by simultaneous nanoshaving and molecular self-assembly. Langmuir 13(2):127–129. https://doi.org/10.1021/la962029f

    Article  Google Scholar 

  130. Garcia R, Martinez RV, Martinez J (2006) Nano-chemistry and scanning probe nanolithographies. Chem Soc Rev 35(1):29–38. https://doi.org/10.1039/B501599P

    Article  CAS  PubMed  Google Scholar 

  131. Bano F, Fruk L, Sanavio B, Glettenberg M, Casalis L, Niemeyer CM, Scoles G (2009) Toward multiprotein nanoarrays using nanografting and DNA directed immobilization of proteins. Nano Lett 9(7):2614–2618. https://doi.org/10.1021/nl9008869

    Article  CAS  PubMed  Google Scholar 

  132. Wadu-Mesthrige K, Xu S, Amro NA, Liu G (1999) Fabrication and imaging of nanometer-sized protein patterns. Langmuir 15(25):8580–8583. https://doi.org/10.1021/la991196n

    Article  CAS  Google Scholar 

  133. Sevenler D, Daaboul GG, Ekiz Kanik F, Ünlü NL, Ünlü MS (2018) Digital microarrays: single-molecule readout with interferometric detection of plasmonic nanorod labels. ACS Nano 12(6):5880–5887. https://doi.org/10.1021/acsnano.8b02036

    Article  CAS  PubMed  Google Scholar 

  134. Awasthi S, Hook LM, Swaminathan G, Cairns TM, Brooks B, Smith JS, Ditto NT, Gindy ME, Bett AJ, Espeseth AS et al (2019) Antibody responses to crucial functional epitopes as a novel approach to assess immunogenicity of vaccine adjuvants. Vaccine 37(29):3770–3778. https://doi.org/10.1016/j.vaccine.2019.05.068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Ludwig SKJ, Tokarski C, Lang SN, van Ginkel LA, Zhu H, Ozcan A, Nielen MWF (2015) Calling biomarkers in milk using a protein microarray on your smartphone. PLoS One 10(8):e0134360. https://doi.org/10.1371/journal.pone.0134360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Li Z, Li Z, Zhao D, Wen F, Jiang J, Xu D (2017) Smartphone-based visualized microarray detection for multiplexed harmful substances in milk. Biosens Bioelectron 87:874–880. https://doi.org/10.1016/j.bios.2016.09.046

    Article  CAS  PubMed  Google Scholar 

  137. Guo S, Lin X, Wang Y, Gong X (2019) Fabrication of paper-based enzyme immobilized microarray by 3D-printing technique for screening α-glucosidase inhibitors in mulberry leaves and lotus leaves. Chin Med 14(1):13. https://doi.org/10.1186/s13020-019-0236-y

    Article  PubMed  PubMed Central  Google Scholar 

  138. Angenendt P, Glökler J, Konthur Z, Lehrach H, Cahill DJ (2003) 3D protein microarrays: performing multiplex immunoassays on a single chip. Anal Chem 75(17):4368–4372. https://doi.org/10.1021/ac034260l

    Article  CAS  PubMed  Google Scholar 

  139. Wu D, Song L, Chen K, Liu F (2012) Modelling and hydrostatic analysis of contact printing microarrays by quill pins. Int J Mech Sci 54(1):206–212. https://doi.org/10.1016/j.ijmecsci.2011.10.010

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentin Romanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Romanov, V., Brooks, B.D. (2021). Antibody Printing Technologies. In: Whittaker, K.C., Huang, RP. (eds) Antibody Arrays. Methods in Molecular Biology, vol 2237. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1064-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1064-0_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1063-3

  • Online ISBN: 978-1-0716-1064-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics