Skip to main content

Industrial Relevance of Trichoderma reesei as an Enzyme Producer

  • Protocol
  • First Online:
Trichoderma reesei

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2234))

Abstract

Trichoderma reesei’s potential as a rapid and efficient biomass degrader was first recognized in the 1950s when it was isolated from Army textiles during World War II. The microbe secreted cellulases that were degrading cotton-based tents and clothing of service members stationed on the Solomon Islands. In the 1970s, at the time of the first global oil crisis, research interest in T. reesei gained popularity as it was explored as part of the solution to the worlds growing dependence on fossil fuels. Much of this early work focused on classical mutagenesis and selection of hypercellulolytic strains. This early lineage was used as a starting point for both academic research with the goal of understanding secretion and regulation of expression of the complex mixture of enzymes required for cellulosic biomass decay as well as for its development as a host for industrial enzyme production. In 2001, at the onset of the second major oil crisis, the US Department of Energy supported research programs in microbial cellulases to produce ethanol from biomass which led to another surge in the study of T. reesei. This further accelerated the development of molecular biology and recombinant DNA tools in T. reesei. In addition to T. reesei’s role in bio-ethanol production, it is used to produce industrial enzymes with a broad range of applications supporting the bio-based economy. To date there are around 243 commercially available enzyme products manufactured by fermentation of microorganisms; 30 of these are made using Trichoderma as a host, 21 of which are recombinant products sold for use in food, feed, and technical applications including textiles and pulp and paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mandels M, Eveleigh DE (2009) Reflections on the United States Military 1941-1987. Biotechnol Biofuels 2:20

    Article  PubMed  PubMed Central  Google Scholar 

  2. Siu R, Reese E (1953) Decomposition of cellulose by microorganisms. Bot Rev 19(7):377

    Article  CAS  Google Scholar 

  3. Montenecourt BS (1983) Trichoderma reesei cellulases. Trends Biotechnol 1(5):156–161

    Article  CAS  Google Scholar 

  4. Simmons E (1977) Classification of some cellulase-producing Trichoderma species. Second International Mycological Congress, Abstracts

    Google Scholar 

  5. Eveleigh DE, Montenecourt BS (1979) Increasing yields of extracellular enzymes. Adv Appl Microbiol 25:57–74

    Article  CAS  PubMed  Google Scholar 

  6. Portnoy T, Margeot A, Linke R, Atanasova L, Fekete E, Sandor E, Hartl L, Karaffa L, Druzhinina IS, Seiboth B, Le Crom S, Kubicek CP (2011) The CRE1 carbon catabolite repressor of the fungus Trichoderma reesei: a master regulator of carbon assimilation. BMC Genomics 12:269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Peterson R, Nevalainen H (2012) Trichoderma reesei RUT-C30—thirty years of strain improvement. Microbiology 158(Pt 1):58–68

    Article  CAS  PubMed  Google Scholar 

  8. Montenecourt BS, Eveleigh DE (1977) Semiquantitative plate assay for determination of cellulase production by Trichoderma viride. Appl Environ Microbiol 33(1):178–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mandels M, Weber J, Parizek R (1971) Enhanced cellulase production by a mutant of Trichoderma viride. Appl Microbiol 21(1):152–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schmoll M, Schuster A (2010) Biology and biotechnology of Trichoderma. Appl Microbiol Biotechnol 87(3):787–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bisaria VS, Ghose TK (1981) Biodegradation of cellulosic materials: Substrates, microorganisms, enzymes and products. Enzym Microb Technol 3(2):90–104

    Article  CAS  Google Scholar 

  12. Ghosh A, Al-Rabiai S, Ghosh BK, Trimiño-Vazquez H, Eveleigh DE, Montenecourt BS (1982) Increased endoplasmic reticulum content of a mutant of Trichoderma reesei (RUT-C30) in relation to cellulase synthesis. Enzym Microb Technol 4(2):110–113

    Article  CAS  Google Scholar 

  13. Ilmén M, Thrane C, Penttilä M (1996) The glucose repressor gene cre1 of Trichoderma: isolation and expression of a full length and a truncated mutant form. Mol Gen Genet 251(4):451–460

    PubMed  Google Scholar 

  14. Geysens S, Dewerte I, Contreras R, Pakula T, Uusitalo J, Penttilä M (2005) Cloning and characterization of the glucosidase II alpha subunit gene of Trichoderma reesei: a frameshift mutation results in the aberrant glycosylation profile of the hypercellulolytic strain Rut-C30. Appl Environ Microbiol 71(6):2910–2924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, Chapman J, Chertkov O, Coutinho PM, Cullen D, Danchin EGJ, Grigoriev IV, Harris P, Jackson M, Kubicek CP, Han CS, Ho I, Larrondo LF, de Leon AL, Magnuson JK, Merino S, Misra M, Nelson B, Putnam N, Robbertse B, Salamov AA, Schmoll M, Terry A, Thayer N, Westerholm-Parvinen A, Schoch CL, Yao J, Barbote R, Nelson MA, Detter C, Bruce D, Kuske CR, Xie G, Richardson P, Rokhsar DS, Lucas SM, Rubin EM, Dunn-Coleman N, Ward M, Brettin TS (2008) Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol 26(5):553–560

    Article  CAS  PubMed  Google Scholar 

  16. Seidl V, Gamauf C, Druzhinina IS, Seiboth B, Hartl L, Kubicek CP (2008) The Hypocrea jecorina (Trichoderma reesei) hypercellulolytic mutant RUT-C30 lacks a 85 kb (29 gene-encoding) region of the wild-type genome. BMC Genomics 9:327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Le Crom S, Schackwitz W, Pennacchio L, Martin J, Baker SE, Magnuson JK, Culley DE, Collett JR, Druzhinina IS, Seiboth B, Kubicek CP, Mathis H, Monot F, Margeot A, Cherry B, Rey M, Berka R (2009) Tracking the roots of cellulase hyperproduction by the fungus Trichoderma reesei using massively parallel DNA sequencing. Proc Natl Acad Sci U S A 106(38):16151–16156

    Article  PubMed  PubMed Central  Google Scholar 

  18. Toyama N (1969) Application of Microbe to Cellulose Industry Cellulose and Cellulase. Textile Eng 22(8):549–555

    Google Scholar 

  19. Home S, Maunula H, Linko M (1983) Cellulases—a novel solution to some malting and brewing problems. Proceedings of the congress—European Brewery Convention:385

    Google Scholar 

  20. Linko M (1989) Enzymes in the forefront of food and feed industries. Food Biotechnol 3(1):1

    Article  CAS  Google Scholar 

  21. McCleary BV, Gibson TS, Allen H, Gams TC (1986) Enzymic hydrolysis and industrial importance of barley β-glucans and wheat flour pentosans. Starch/Staerke 38(12):433

    Article  CAS  Google Scholar 

  22. Nevalainen H, Harkki A, Penttilä M, Saloheimo M, Teeri T, Knowles J (1990) Trichoderma reesei as a production organism for enzymes for the pulp and paper industry. In: Kirk TK, Chang H-M (eds) Biotechnology in pulp and paper manufacture. Applications and fundamental investigations. Butterworth-Heinemann, Boston, pp 593–599

    Google Scholar 

  23. Tyndall M (1990) Upgrading garment washing techniques. Am Dyestuff Rep 79(5):6p

    Google Scholar 

  24. Cherry JR, Fidantsef AL (2003) Directed evolution of industrial enzymes: an update. Curr Opin Biotechnol 14(4):438–443

    Article  CAS  PubMed  Google Scholar 

  25. Gryshyna A, Kautto L, Peterson R, Nevalainen H (2016) On the safety of filamentous fungi with special emphasis on Trichoderma reesei and products made by recombinant means. In: Schmoll M, Dattenböck C (eds) Gene expression systems in fungi: advancements and applications. Fungal biology. Springer, Cham

    Google Scholar 

  26. Frisvad JC, Moller LLH, Larsen TO, Kumar R, Arnau J (2018) Safety of the fungal workhorses of industrial biotechnology: update on the mycotoxin and secondary metabolite potential of Aspergillus niger, Aspergillus oryzae, and Trichoderma reesei. Appl Microbiol Biotechnol 102(22):9481–9515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Penttilä M, Rättö M, Knowles J, Nevalainen H, Salminen E (1987) A versatile transformation system for the cellulolytic filamentous fungus Trichoderma reesei. Gene 61(2):155–164

    Article  PubMed  Google Scholar 

  28. Zhong YH, Wang XL, Wang TH, Jiang Q (2007) Agrobacterium-mediated transformation (AMT) of Trichoderma reesei as an efficient tool for random insertional mutagenesis. Appl Microbiol Biotechnol 73(6):1348–1354

    Article  CAS  PubMed  Google Scholar 

  29. Hazell BW, Te’o VSJ, Bradner JR, Bergquist PL, Nevalainen KMH (2000) Rapid transformation of high cellulase-producing mutant strains of Trichoderma reesei by microprojectile bombardment. Lett Appl Microbiol 30(4):282–286

    Article  CAS  PubMed  Google Scholar 

  30. Schuster A, Bruno KS, Collett JR, Baker SE, Seiboth B, Kubicek CP, Schmoll M (2012) A versatile toolkit for high throughput functional genomics with Trichoderma reesei. Biotechnol Biofuels 5(1):1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Smith JL, Ward M, Bayliss FT (1991) Sequence of the cloned pyr4 gene of Trichoderma reesei and its use as a homologous selectable marker for transformation. Curr Genet 19(1):27–33

    Article  CAS  PubMed  Google Scholar 

  32. Deane EE, Whipps JM, Lynch JM, Peberdy JF (1999) Transformation of Trichoderma reesei with a constitutively expressed heterologous fungal chitinase gene. Enzym Microb Technol 24:419–424

    Article  CAS  Google Scholar 

  33. Bergès T, Barreau C (1991) Isolation of uridine auxotrophs from Trichoderma reesei and efficient transformation with the cloned ura3 and ura5 genes. Curr Genet 19(5):359–365

    Article  PubMed  Google Scholar 

  34. Harkki A, Uusitalo J, Bailey M, Penttilä M, Knowles JKC (1989) A novel fungal expression system: secretion of active calf chymosin from the filamentous fungus Trichoderma Reesei. Nat Biotechnol 7(6):596–603

    Article  CAS  Google Scholar 

  35. Shoemaker S, Schweickart V, Ladner M, Gelfand D, Kwok S, Myambo K, Innis M (1983) Molecular cloning of exo-cellobiohydrolase I derived from Trichoderma Reesei strain L27. Nat Biotechnol 1(8):691

    Article  CAS  Google Scholar 

  36. Teeri T, Salovuori I, Knowles J (1983) The molecular cloning of the major cellulase gene from Trichoderma Reesei. Nat Biotechnol 1(8):696

    Article  CAS  Google Scholar 

  37. Prasun K, Mukherjee BAH, Singh US, Mukherjee M, Schmoll M (eds) (2013) Trichoderma: biology and applications, vol 28, issue 6. Ringgold, Beaverton

    Google Scholar 

  38. Guangtao Z, Hartl L, Schuster A, Polak S, Schmoll M, Wang T, Seidl V, Seiboth B (2009) Gene targeting in a nonhomologous end joining deficient Hypocrea jecorina. J Biotechnol 139(2):146–151

    Article  CAS  PubMed  Google Scholar 

  39. Steiger MG, Vitikainen M, Uskonen P, Brunner K, Adam G, Pakula T, Penttilä M, Saloheimo M, Mach RL, Mach-Aigner AR (2011) Transformation system for Hypocrea jecorina (Trichoderma reesei) that favors homologous integration and employs reusable bidirectionally selectable markers. Appl Environ Microbiol 77(1):114–121

    Article  CAS  PubMed  Google Scholar 

  40. Ouedraogo J, Arentshorst M, Nikolaev I, Barends S, Ram A (2015) I- SceI-mediated double-strand DNA breaks stimulate efficient gene targeting in the industrial fungus Trichoderma reesei. Appl Microbiol Biotechnol 99(23):10083–10095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu R, Chen L, Jiang Y, Zhou Z, Zou G (2015) Efficient genome editing in filamentous fungus Trichoderma reesei using the CRISPR/Cas9 system. Cell Discov 1:15007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu P, Wang W, Wei D (2017) Use of transcription activator-like effector for efficient gene modification and transcription in the filamentous fungus Trichoderma reesei. J Industrial Microbiol Biotechnol 44(9):1367–1373

    Article  CAS  Google Scholar 

  43. Nyyssönen E, Penttilä M, Harkki A, Saloheimo A, Knowles J, Keränen S (1993) Efficient production of antibody fragments by the filamentous fungus Trichoderma reesei. Bio/Technol 11(5):591

    Google Scholar 

  44. Keränen S, Penttilä M (1995) Production of recombinant proteins in the filamentous fungus Trichoderma reesei. Curr Opin Biotechnol 6(5):534–537

    Article  PubMed  Google Scholar 

  45. Nyyssonen E, Keranen S (1995) Multiple roles of the cellulase CBHI in enhancing production of fusion antibodies by the filamentous fungus Trichoderma reesei. Curr Genet 28(1):71–79

    Article  CAS  PubMed  Google Scholar 

  46. Sun A, Peterson R, Te’o J, Nevalainen H (2016) Expression of the mammalian peptide hormone obestatin in Trichoderma reesei. New Biotechnol 33(1):99–106

    Article  CAS  Google Scholar 

  47. Joutsjoki V, Torkkeli T, Helena Nevalainen K (1993) Transformation of Trichoderma reesei with the Hormoconis resinae glucoamylase P (gamP) gene: production of a heterologous glucoamylase by Trichoderma reesei. Curr Genet 24(3):223

    Article  CAS  PubMed  Google Scholar 

  48. Joutsjoki VV, Kuittinen M, Torkkeli TK, Suominen PL (1993) Secretion of the Hormoconis resinae glucoamylase P enzyme from Trichoderma reesei directed by the natural and the cbh1 gene secretion signal. FEMS Microbiol Lett 112(3):281–286

    Article  CAS  PubMed  Google Scholar 

  49. Piddington CS, Houston CS, Paloheimo M, Cantrell M, Miettinen-Oinonen A, Nevalainen H, Rambosek J (1993) The cloning and sequencing of the genes encoding phytase (phy) and pH 2.5-optimum acid phosphatase (aph) from Aspergillus niger var. awamori. Gene 133(1):55–62

    Article  CAS  PubMed  Google Scholar 

  50. Schmoll M, Seibel C, Kotlowski C, Kubicek CP, Wöllert Genannt Vendt F, Liebmann B (2010) Recombinant production of an Aspergillus nidulans class i hydrophobin (DewA) in Hypocrea jecorina (Trichoderma reesei) is promoter-dependent. Appl Microbiol Biotechnol 88(1):95–103

    Article  CAS  PubMed  Google Scholar 

  51. Landowski CP, Huuskonen A, Wahl R, Westerholm-Parvinen A, Kanerva A, Hänninen A-L, Salovuori N, Penttilä M, Natunen J, Ostermeier C, Helk B, Saarinen J, Saloheimo M (2015) Enabling low cost biopharmaceuticals: a systematic approach to delete proteases from a well-known protein production host Trichoderma reesei. PLoS One 10(8):1

    Article  CAS  Google Scholar 

  52. Landowski CP, Mustalahti E, Sivasiddarthan D, Westerholm-Parvinen A, Saloheimo M, Wahl R, Croute L, Sommer B, Ostermeier C, Helk B, Saarinen J (2016) Enabling low cost biopharmaceuticals: high level interferon alpha-2b production in Trichoderma reesei. Microb Cell Factories 15(1):104

    Article  CAS  Google Scholar 

  53. Linder MB, Qiao M, Laumen F, Selber K, Hyytia T, Nakari-Setala T, Penttilä ME (2004) Efficient purification of recombinant proteins using hydrophobins as tags in surfactant-based two-phase systems. Biochemistry 43:11873–11882

    Article  CAS  PubMed  Google Scholar 

  54. Mustalahti E, Saloheimo M, Joensuu JJ (2013) Intracellular protein production in Trichoderma reesei (Hypocrea jecorina) with hydrophobin fusion technology. New Biotechnol 30(2):262–268

    Article  CAS  Google Scholar 

  55. Smith W, Jäntti J, Oja M, Saloheimo M (2014) Comparison of intracellular and secretion-based strategies for production of human α-galactosidase A in the filamentous fungus Trichoderma reesei. BMC Biotechnol 14:91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. The U.S. biobased economy. https://www.bio.org/toolkit/infographics/us-biobased-economy-economic-impact

  57. Energy USDo (2017) U.S. Energy and Employment Report (USEER) 2017. BW Research Partnership. https://www.energy.gov/downloads/2017-us-energy-and-employment-report

  58. Golden JS, Handfield RB, Daystar J, Morrison B, McConnell TE (2019) An economic impact analysis of the US biobased product industry. USDA, A Joint Publication of the Duke Center for Sustainability & Commerce and the Supply Chain Resource Cooperative at North Carolina State University, SWWashington

    Google Scholar 

  59. Urbanchuck J (2017) Contribution of the ethanol industry to the economy of the United States in 2016. ABF Economics, Doylestown, PA

    Google Scholar 

  60. MarketLine (2017) Industry profile 2017. Global Biotechnology, London

    Google Scholar 

  61. Market Research F (2018) Global industrial enzymes markets, 7th edn Marketreasearch.com

    Google Scholar 

  62. Seiboth B, Pakdaman BS, Hartl L, Kubicek CP (2007) Lactose metabolism in filamentous fungi: how to deal with an unknown substrate. Fungal Biol Rev 21(1):42–48

    Article  Google Scholar 

  63. Mach RL, Zeilinger S (2003) Regulation of gene expression in industrial fungi: Trichoderma. Appl Microbiol Biotechnol 60(5):515–522

    Article  CAS  PubMed  Google Scholar 

  64. (AMFEP) Eiaomafoep (2015) List of commercial enzymes for food, feed and technical applications. https://amfep.org/_library/_files/Amfep_List_of_Enzymes_update_May_2015.pdf

  65. Rychen G, Aquilina G, Azimonti G, Bampidis V, Bastos ML, Bories G, Chesson A, Flachowsky G, Gropp J, Kolar B, Kouba M, López-Alonso M, López Puente S, Mantovani A, Mayo B, Ramos F, Saarela M, Villa RE, Wallace RJ, Wester P, Brantom P, Dierick NA, Herman L, Glandorf B, Kärenlampi S, Aguilera J, Anguita M, Cocconcelli PS (2018) Safety and efficacy of muramidase from Trichoderma reesei DSM 32338 as a feed additive for chickens for fattening and minor poultry species. EFSA J 16(7):5342

    Google Scholar 

  66. Raveendran S, Parameswaran B, Ummalyma SB, Abraham A, Mathew AK, Madhavan A, Rebello S, Pandey A (2018) Applications of microbial enzymes in food industry. Food Technol Biotechnol 56(1):16–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Inflationdata.com (2019) Historical crude oil prices. https://inflationdata.com/articles/inflation-adjusted-prices/historical-crude-oil-prices-table/

  68. Allen F, Andreotti R, Eveleigh DE, Nystrom J (2009) Mary Elizabeth Hickox Mandels, 90, bioenergy leader. Biotechnol Biofuels 2:22

    Article  PubMed  PubMed Central  Google Scholar 

  69. Gruber F, Kubicek CP, Visser J, de Graaff LH (1990) Cloning of the Trichoderma reesei pyrG gene and its use as a homologous marker for a high-frequency transformation system. Curr Genet 18(5):447–451

    Article  CAS  Google Scholar 

  70. Efsa Panel on Food Contact Materials EaPA, Vittorio S, José Manuel Barat B, Claudia B, Beat Johannes B, Pier Sandro C, Riccardo C, David Michael G, Konrad G, Evgenia L, Alicja M, Gilles R, Inger-Lise S, Christina T, Henk Van L, Laurence V, Holger Z, Boet G, Francesca M, André P, Jaime A, Margarita AG, Magdalena A, Davide A, Ana G, Natália K, Yi L, Andrew C (2018) Safety evaluation of the food enzyme endo-1,4-β-xylanase from a genetically modified Trichoderma reesei (strain DP-Nzd22). EFSA J 16(11):5479

    Google Scholar 

  71. Efsa Panel on Food Contact Materials EaPA, Vittorio S, José Manuel Barat B, Claudia B, Beat Johannes B, Pier Sandro C, Riccardo C, David Michael G, Konrad G, Evgenia L, Alicja M, Gilles R, Inger-Lise S, Christina T, Henk Van L, Laurence V, Holger Z, Boet G, Lieve H, Jaime A, Andrew C (2019) Safety evaluation of the food enzyme α,α-trehalase glucohydrolase from Trichoderma reesei (strain DP-Nzs51). EFSA J 17(5):5768

    Google Scholar 

  72. Silano V, Barat Baviera JM, Bolognesi C, Brüschweiler BJ, Cocconcelli PS, Crebelli R, Gott DM, Grob K, Lampi E, Mortensen A, Rivière G, Steffensen IL, Tlustos C, Van Loveren H, Vernis L, Holger Z, Jany KD, Glandorf B, Penninks A, Želježic D (2019) Safety evaluation of the food enzyme alpha-amylase from a genetically modified Trichoderma reesei (strain DP-Nzb48). EFSA J 17(1):5553

    Google Scholar 

  73. Silano V, Barat Baviera JM, Bolognesi C, Brüschweiler BJ, Cocconcelli PS, Crebelli R, Gott DM, Grob K, Lampi E, Mortensen A, Riviere G, Steffensen IL, Tlustos C, Van Loveren H, Vernis L, Zorn H, Glandorf B, Marcon F, Penninks A, Smith A (2019) Safety evaluation of the food enzyme lysophospholipase from Trichoderma reesei (strain RF7206). EFSA J 17(1):5548

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debbie S. Yaver .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fischer, A.J., Maiyuran, S., Yaver, D.S. (2021). Industrial Relevance of Trichoderma reesei as an Enzyme Producer. In: Mach-Aigner, A.R., Martzy, R. (eds) Trichoderma reesei. Methods in Molecular Biology, vol 2234. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1048-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1048-0_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1047-3

  • Online ISBN: 978-1-0716-1048-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics