Skip to main content

Sample Preparation and Data Analysis for NMR-Based Metabolomics

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2194))

Abstract

NMR spectroscopy has become one of the preferred analytical techniques for metabolomics studies due to its inherent nondestructive nature, ability to identify and quantify metabolites simultaneously in a complex mixture, minimal sample preparation requirement, and high degree of experimental reproducibility. NMR-based metabolomics studies involve the measurement and multivariate statistical analysis of metabolites present in biological samples such as biofluids, stool/feces, intestinal content, tissue, and cell extracts by high-resolution NMR spectroscopy—the goal then is to identify and quantify metabolites and evaluate changes of metabolite concentrations in response to some perturbation. Here we describe methodologies for NMR sample preparation of biofluids (serum, saliva, and urine) and stool/feces, intestinal content, and tissues for NMR experiments including extraction of polar metabolites and application of NMR in metabolomics studies. One dimensional (1D) 1H NMR experiments with different variations such as pre-saturation, relaxation-edited, and diffusion-edited are routinely acquired for profiling and metabolite identification and quantification. 2D homonuclear 1H-1H TOCSY and COSY, 2D J-resolved, and heteronuclear 1H-13C HSQC and HMBC are also performed to assist with metabolite identification and quantification. The NMR data are then subjected to targeted and/or untargeted multivariate statistical analysis for biomarker discovery, clinical diagnosis, toxicological studies, molecular phenotyping, and functional genomics.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Bell JD, Sadler PJ, Morris VC, Levande OA (1991) Effect of aging and diet on proton NMR spectra of rat urine. Magn Reson Med 17:414–422

    Article  CAS  PubMed  Google Scholar 

  2. Fan TWM, Lane AN, Higashi RM (2012) The handbook of metabolomics. Humana, New York

    Book  Google Scholar 

  3. Beckonert O, Keun HC, Ebbels TMD et al (2007) Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat Protoc 2:2692–2703. https://doi.org/10.1038/nprot.2007.376

    Article  CAS  Google Scholar 

  4. Dumas ME, Maibaum EC, Teague C et al (2006) Assessment of analytical reproducibility of 1H NMR spectroscopy based metabonomics for large-scale epidemiological research: the INTERMAP study. Anal Chem 78:2199–2208. https://doi.org/10.1021/ac0517085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Emwas A-H, Roy R, McKay RT et al (2019) NMR spectroscopy for metabolomics research. Metabolites 9:1–39. https://doi.org/10.3390/metabo9070123

    Article  CAS  Google Scholar 

  6. Nicholson JK, Lindon JC, Holmes E (1999) “Metabonomics”: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29:1181–1189. https://doi.org/10.1080/004982599238047

    Article  CAS  PubMed  Google Scholar 

  7. Dame ZT, Aziat F, Mandal R et al (2015) The human saliva metabolome. Metabolomics 11:1864–1883. https://doi.org/10.1007/s11306-015-0840-5

    Article  CAS  Google Scholar 

  8. Nicholls AW, Mortishire-Smith RJ, Nicholson JK (2003) NMR spectroscopic-based metabonomic studies of urinary metabolite variation in acclimatizing germ-free rats. Chem Res Toxicol 16:1395–1404. https://doi.org/10.1021/tx0340293

    Article  CAS  PubMed  Google Scholar 

  9. Bollard ME, Holmes E, Lindon JC et al (2001) Investigations into biochemical changes due to diurnal variation and estrus cycle in female rats using high-resolution 1H NMR spectroscopy of urine and pattern recognition. Anal Biochem 295:194–202. https://doi.org/10.1006/abio.2001.5211

    Article  CAS  PubMed  Google Scholar 

  10. Le Belle JE, Harris NG, Williams SR, Bhakoo KK (2002) A comparison of cell and tissue extraction techniques using high-resolution 1H-NMR spectroscopy. NMR Biomed 15:37–44. https://doi.org/10.1002/nbm.740

    Article  CAS  PubMed  Google Scholar 

  11. Hauser A, Eisenmann P, Muhle-goll C et al (2019) Efficient extraction from mice feces for NMR metabolomics measurements with special emphasis on SCFAs. Metabolites 9:1–19. https://doi.org/10.3390/metabo9030055

    Article  CAS  Google Scholar 

  12. Lin Y, Ma C, Liu C et al (2016) NMR-based fecal metabolomics fingerprinting as predictors of earlier diagnosis in patients with colorectal cancer. Oncotarget 7:29454–29464. https://doi.org/10.18632/oncotarget.8762

    Article  PubMed  PubMed Central  Google Scholar 

  13. Tian Y, Cai J, Gui W et al (2019) Berberine directly affects the gut microbiota to promote intestinal farnesoid X receptor activation. Drug Metab Dispos 47:86–93. https://doi.org/10.1124/dmd.118.083691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Beckonert O, Coen M, Keun HC et al (2010) High-resolution magic-angle-spinning NMR spectroscopy for metabolic profiling of intact tissues. Nat Protoc 5:1019–1032. https://doi.org/10.1038/nprot.2010.45

    Article  CAS  PubMed  Google Scholar 

  15. Swanson MG, Vigneron DB, Tabatabai ZL et al (2003) Proton HR-MAS spectroscopy and quantitative pathologic analysis of MRI/3D-MRSI-targeted postsurgical prostate tissues. Magn Reson Med 50:944–954. https://doi.org/10.1002/mrm.10614

    Article  CAS  PubMed  Google Scholar 

  16. Tate AR, Foxall PJD, Holmes E et al (2000) Distinction between normal and renal cell carcinoma kidney cortical biopsy samples using pattern recognition of 1H magic angle spinning (MAS) NMR spectra. NMR Biomed 13:64–71. https://doi.org/10.1002/(SICI)1099-1492(200004)13:2<64::AID-NBM612>3.0.CO;2-X

    Article  CAS  PubMed  Google Scholar 

  17. Martínez-Bisbal MC, Martí-Bonmatí L, Piquer J et al (2004) 1H and13C HR-MAS spectroscopy of intact biopsy samples ex vivo and in vivo 1H MRS study of human high grade gliomas. NMR Biomed 17:191–205. https://doi.org/10.1002/nbm.888

    Article  CAS  PubMed  Google Scholar 

  18. Somashekar BS, Amin AG, Rithner CD et al (2011) Metabolic profiling of lung granuloma in Mycobacterium tuberculosis infected guinea pigs: ex vivo 1H magic angle spinning NMR studies. J Proteome Res 10:4186–4195. https://doi.org/10.1021/pr2003352

    Article  CAS  PubMed  Google Scholar 

  19. Calvo N, Beltrán-Debón R, Rodríguez-Gallego E et al (2015) Liver fat deposition and mitochondrial dysfunction in morbid obesity: an approach combining metabolomics with liver imaging and histology. World J Gastroenterol 21:7529–7544. https://doi.org/10.3748/wjg.v21.i24.7529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lin AQ, Shou JX, Li XY et al (2014) Metabolic changes in acute cerebral infarction: findings from proton magnetic resonance spectroscopic imaging. Exp Ther Med 7:451–455. https://doi.org/10.3892/etm.2013.1418

    Article  CAS  PubMed  Google Scholar 

  21. Simões RV, Martinez-Aranda A, Martín B et al (2008) Preliminary characterization of an experimental breast cancer cells brain metastasis mouse model by MRI/MRS. Magn Reson Mater Phys Biol Med 21:237–249. https://doi.org/10.1007/s10334-008-0114-6

    Article  CAS  Google Scholar 

  22. Moka D, Vorreuther R, Schicha H et al (1998) Biochemical classification of kidney carcinoma biopsy samples using magic-angle-spinning 1H nuclear magnetic resonance spectroscopy. J Pharm Biomed Anal 17:125–132

    Article  CAS  PubMed  Google Scholar 

  23. Cheng LL, Pohl U (2006) The role of NMR-based metabolomics in cancer. In: Lindon JC, Nicholson JK, Holmes E (eds) Handbook of metabonomic and metabolomics. Elsevier, Amsterdam, pp 345–374

    Google Scholar 

  24. Lindon JC, Holmes E (2006) A survey of metabolomics approaches for disease characterization. In: Lindon JC, Nicholson JK, Holmes E (eds) Handbook of metabonomic and metabolomics. Elsevier, Amsterdam, pp 413–442

    Google Scholar 

  25. Moolenaar SH, Engelke UFH, Wevers RA (2003) Proton nuclear magnetic resonance spectroscopy of body fluids in the field of inborn errors of metabolism. Ann Clin Biochem 40:16–24. https://doi.org/10.1258/000456303321016132

    Article  CAS  PubMed  Google Scholar 

  26. Brindle JT, Antti H, Holmes E et al (2002) Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using 1H-NMR-based metabonomics. Nat Med 8:1439–1444. https://doi.org/10.1038/nm802

    Article  CAS  PubMed  Google Scholar 

  27. Mickiewicz B, Duggan GE, Winston BW et al (2014) Metabolic profiling of serum samples by 1H nuclear magnetic resonance spectroscopy as a potential diagnostic approach for septic shock. Crit Care Med 42:1140–1149. https://doi.org/10.1097/CCM.0000000000000142

    Article  CAS  PubMed  Google Scholar 

  28. Nicholson JK, Holmes E, Wilson ID (2005) Gut microorganisms, mammalian metabolism and personalized health care. Nat Rev Microbiol 3:431–438. https://doi.org/10.1038/nrmicro1152

    Article  CAS  PubMed  Google Scholar 

  29. Nicholson JK, Connelly J, Lindon JC, Holmes E (2002) Metabonomics: a platform for studying drug toxicity and gene function. Nat Rev Drug Discov 1:153–161. https://doi.org/10.1038/nrd728

    Article  CAS  PubMed  Google Scholar 

  30. Gartland KPR, Sanins SM, Nicholson JK et al (1990) Pattern recognition analysis of high resolution 1H NMR spectra of urine. A nonlinear mapping approach to the classification of toxicological data. NMR Biomed 3:166–172. https://doi.org/10.1002/nbm.1940030404

    Article  CAS  PubMed  Google Scholar 

  31. Gartland KPR, Beddell CR, Lindon JC, Nicholson JK (1991) Application of pattern recognition methods to the analysis and classification of toxicological data derived from proton nuclear magnetic resonance spectroscopy of urine. Mol Pharmacol 39:629–642

    CAS  PubMed  Google Scholar 

  32. Ebbels T, Keun H, Beckonert O et al (2003) Toxicity classification from metabonomic data using a density superposition approach: “CLOUDS”. Anal Chim Acta 490:109–122. https://doi.org/10.1016/S0003-2670(03)00121-1

    Article  CAS  Google Scholar 

  33. Antti H, Ebbels TMD, Keun HC et al (2004) Statistical experimental design and partial least squares regression analysis of biofluid metabonomic NMR and clinical chemistry data for screening of adverse drug effects. Chemom Intell Lab Syst 73:139–149. https://doi.org/10.1016/j.chemolab.2003.11.013

    Article  CAS  Google Scholar 

  34. Cloarec O, Dumas ME, Craig A et al (2005) Statistical total correlation spectroscopy: an exploratory approach for latent biomarker identification from metabolic 1H NMR data sets. Anal Chem 77:1282–1289. https://doi.org/10.1021/ac048630x

    Article  CAS  PubMed  Google Scholar 

  35. Crockford DJ, Holmes E, Lindon JC et al (2006) Statistical heterospectroscopy, an approach to the integrated analysis of NMR and UPLC-MS data sets: application in metabonomic toxicology studies. Anal Chem 78:363–371. https://doi.org/10.1021/ac051444m

    Article  CAS  PubMed  Google Scholar 

  36. Emwas AH, Saccenti E, Gao X et al (2018) Recommended strategies for spectral processing and post-processing of 1D 1H-NMR data of biofluids with a particular focus on urine. Metabolomics 14:1–23. https://doi.org/10.1007/s11306-018-1321-4

    Article  CAS  Google Scholar 

  37. Lacy P, McKay RT, Finkel M et al (2014) Signal intensities derived from different NMR probes and parameters contribute to variations in quantification of metabolites. PLoS One 9:1–10. https://doi.org/10.1371/journal.pone.0085732

    Article  CAS  Google Scholar 

  38. Mo H, Raftery D (2008) Pre-SAT180, a simple and effective method for residual water suppression. J Magn Reson 190:1–6. https://doi.org/10.1016/j.jmr.2007.09.016

    Article  CAS  Google Scholar 

  39. Meiboom S, Gill D (1958) Modified spin-echo method for measuring nuclear relaxation times. Rev Sci Instrum 29:688–691. https://doi.org/10.1063/1.1716296

    Article  CAS  Google Scholar 

  40. Carr HY, Purcell EM (1954) Effects of diffusion on free precession in nuclear magnetic resonace experiments. Phys Rev 94:630–638

    Article  CAS  Google Scholar 

  41. Wishart DS (2008) Quantitative metabolomics using NMR. Trends Anal Chem 27:228–237. https://doi.org/10.1016/j.trac.2007.12.001

    Article  CAS  Google Scholar 

  42. Aue WP, Karhan J, Ernst RR (1976) Homonuclear broad band decoupling and two-dimensional J-resolved NMR spectroscopy. J Chem Phys 64:4226–4227. https://doi.org/10.1063/1.431994

    Article  CAS  Google Scholar 

  43. Wu DH, Chen A, Johnson CS (1995) An improved diffusion-ordered spectroscopy experiment incorporating bipolar-gradient pulses. J Magn Reson Ser A 115:260–264

    Article  CAS  Google Scholar 

  44. Cañueto D, Gómez J, Salek RM et al (2018) rDolphin: a GUI R package for proficient automatic profiling of 1D 1H-NMR spectra of study datasets. Metabolomics 14:1–5. https://doi.org/10.1007/s11306-018-1319-y

    Article  CAS  Google Scholar 

  45. Cui Q, Lewis IA, Hegeman AD et al (2008) Metabolite identification via the Madison Metabolomics Consortium Database [3]. Nat Biotechnol 26:162–164. https://doi.org/10.1038/nbt0208-162

    Article  CAS  PubMed  Google Scholar 

  46. Tardivel PJC, Canlet C, Lefort G et al (2017) ASICS: an automatic method for identification and quantification of metabolites in complex 1D 1H NMR spectra. Metabolomics 13:1–9. https://doi.org/10.1007/s11306-017-1244-5

    Article  CAS  Google Scholar 

  47. Röhnisch HE, Eriksson J, Müllner E et al (2018) AQuA: an automated quantification algorithm for high-throughput NMR-based metabolomics and its application in human plasma. Anal Chem 90:2095–2102. https://doi.org/10.1021/acs.analchem.7b04324

    Article  CAS  PubMed  Google Scholar 

  48. Le Guennec A, Giraudeau P, Caldarelli S (2014) Evaluation of fast 2D NMR for metabolomics. Anal Chem 86:5946–5954. https://doi.org/10.1021/ac500966e

    Article  CAS  PubMed  Google Scholar 

  49. Féraud B, Govaerts B, Verleysen M, de Tullio P (2015) Statistical treatment of 2D NMR COSY spectra in metabolomics: data preparation, clustering-based evaluation of the Metabolomic Informative Content and comparison with 1H-NMR. Metabolomics 11:1756–1768. https://doi.org/10.1007/s11306-015-0830-7

    Article  CAS  Google Scholar 

  50. Sandusky P, Raftery D (2005) Use of selective TOCSY NMR experiments for quantifying minor components in complex mixtures: application to the metabonomics of amino acids in honey. Anal Chem 77:2455–2463. https://doi.org/10.1021/ac0484979

    Article  CAS  PubMed  Google Scholar 

  51. Lewis IA, Schommer SC, Hodis B et al (2007) Method for determining molar concentrations of metabolites in complex solutions from two-dimensional 1H-13C NMR spectra. Anal Chem 79:9385–9390. https://doi.org/10.1021/ac071583z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bernini P, Bertini I, Luchinat C et al (2009) Individual human phenotypes in metabolic space and time. J Proteome Res 8:4264–4271. https://doi.org/10.1021/pr900344m

    Article  CAS  PubMed  Google Scholar 

  53. Fonville JM, Maheir AD, Coen M et al (2010) Evaluation of full-resolution J-resolved 1H NMR projections of biofluids for metabonomics information retrieval and biomarker identification. Anal Chem 82:1811–1821. https://doi.org/10.1021/ac902443k

    Article  CAS  PubMed  Google Scholar 

  54. Ludwig C, Viant MR (2010) Two-dimensional J-resolved NMR spectroscopy: review of a key methodology in the metabolomics toolbox. Phytochem Anal 21:22–32. https://doi.org/10.1002/pca.1186

    Article  CAS  PubMed  Google Scholar 

  55. Chong J, Wishart DS, Xia J (2019) Using MetaboAnalyst 4.0 for comprehensive and integrative metabolomics data analysis. Curr Protoc Bioinformatics 68:1–128

    Google Scholar 

  56. Tian Y, Zhang L, Wang Y, Tang H (2012) Age-related topographical metabolic signatures for the rat gastrointestinal contents. J Proteome Res 11:1397–1411. https://doi.org/10.1021/pr2011507

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapas K. Mal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mal, T.K., Tian, Y., Patterson, A.D. (2021). Sample Preparation and Data Analysis for NMR-Based Metabolomics. In: Markowitz, J. (eds) Translational Bioinformatics for Therapeutic Development. Methods in Molecular Biology, vol 2194. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0849-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0849-4_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0848-7

  • Online ISBN: 978-1-0716-0849-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics