Skip to main content

Lipid Raft Isolation by Sucrose Gradient Centrifugation and Visualization of Raft-Located Proteins by Fluorescence Microscopy: The Use of Combined Techniques to Assess Fas/CD95 Location in Rafts During Apoptosis Triggering

  • Protocol
  • First Online:
Lipid Rafts

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2187))

Abstract

Lipid rafts are heterogeneous membrane domains enriched in cholesterol, sphingolipids, and gangliosides that serve as sorting platforms to compartmentalize and modulate signaling pathways. Death receptors and downstream signaling molecules have been reported to be recruited into these raft domains during the triggering of apoptosis. Here, we provide two protocols that support the presence of Fas/CD95 in lipid rafts during apoptosis, involving lipid raft isolation and confocal microscopy techniques. A detailed protocol is provided for the isolation of lipid rafts, by taking advantage of their resistance to Triton X-100 solubilization at 4 °C, followed by subsequent sucrose gradient centrifugation and analysis of the protein composition of the different gradient fractions by Western blotting. In addition, we also provide a detailed protocol for the visualization of the coclustering of Fas/CD95 death receptor and lipid rafts, as assessed by using anti-Fas/CD95 antibodies and fluorescent dye-conjugated cholera toxin B subunit that binds to ganglioside GM1, a main component of lipid rafts, by immunofluorescence and confocal microscopy. These protocols can be extended to any protein of interest to be analyzed for its association to lipid rafts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572

    Article  CAS  PubMed  Google Scholar 

  2. Simons K, Ehehalt R (2002) Cholesterol, lipid rafts, and disease. J Clin Invest 110:597–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zajchowski LD, Robbins SM (2002) Lipid rafts and little caves. Compartmentalized signalling in membrane microdomains. Eur J Biochem 269:737–752

    Article  CAS  PubMed  Google Scholar 

  4. Mollinedo F, Gajate C (2006) Fas/CD95 death receptor and lipid rafts: new targets for apoptosis-directed cancer therapy. Drug Resist Updat 9:51–73

    Article  CAS  PubMed  Google Scholar 

  5. Pike LJ (2006) Rafts defined: a report on the keystone symposium on lipid rafts and cell function. J Lipid Res 47:1597–1598

    Article  CAS  PubMed  Google Scholar 

  6. Pike LJ (2009) The challenge of lipid rafts. J Lipid Res 50(Suppl):S323–S328

    Article  PubMed  PubMed Central  Google Scholar 

  7. Mollinedo F, Gajate C (2015) Lipid rafts as major platforms for signaling regulation in cancer. Adv Biol Regul 57:130–146

    Article  CAS  PubMed  Google Scholar 

  8. Brown DA, London E (1998) Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol 14:111–136

    Article  CAS  PubMed  Google Scholar 

  9. Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39

    Article  CAS  PubMed  Google Scholar 

  10. Brown DA, London E (2000) Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J Biol Chem 275:17221–17224

    Article  CAS  PubMed  Google Scholar 

  11. Nieto-Miguel T, Gajate C, Gonzalez-Camacho F, Mollinedo F (2008) Proapoptotic role of Hsp90 by its interaction with c-Jun N-terminal kinase in lipid rafts in edelfosine-mediated antileukemic therapy. Oncogene 27:1779–1787

    Article  CAS  PubMed  Google Scholar 

  12. Jaffres PA, Gajate C, Bouchet AM, Couthon-Gourves H, Chantome A, Potier-Cartereau M, Besson P, Bougnoux P, Mollinedo F, Vandier C (2016) Alkyl ether lipids, ion channels and lipid raft reorganization in cancer therapy. Pharmacol Ther 165:114–131

    Article  CAS  PubMed  Google Scholar 

  13. London E, Brown DA (2000) Insolubility of lipids in triton X-100: physical origin and relationship to sphingolipid/cholesterol membrane domains (rafts). Biochim Biophys Acta 1508:182–195

    Article  CAS  PubMed  Google Scholar 

  14. Pike LJ (2003) Lipid rafts: bringing order to chaos. J Lipid Res 44:655–667

    Article  CAS  PubMed  Google Scholar 

  15. Harder T, Engelhardt KR (2004) Membrane domains in lymphocytes—from lipid rafts to protein scaffolds. Traffic 5:265–275

    Article  CAS  PubMed  Google Scholar 

  16. Adam RM, Mukhopadhyay NK, Kim J, Di Vizio D, Cinar B, Boucher K, Solomon KR, Freeman MR (2007) Cholesterol sensitivity of endogenous and myristoylated Akt. Cancer Res 67:6238–6246

    Article  CAS  PubMed  Google Scholar 

  17. Gao X, Lowry PR, Zhou X, Depry C, Wei Z, Wong GW, Zhang J (2011) PI3K/Akt signaling requires spatial compartmentalization in plasma membrane microdomains. Proc Natl Acad Sci U S A 108:14509–14514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gao X, Zhang J (2009) Akt signaling dynamics in plasma membrane microdomains visualized by FRET-based reporters. Commun Integr Biol 2:32–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Reis-Sobreiro M, Roue G, Moros A, Gajate C, de la Iglesia-Vicente J, Colomer D, Mollinedo F (2013) Lipid raft-mediated Akt signaling as a therapeutic target in mantle cell lymphoma. Blood Cancer J 3:e118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gajate C, Del Canto-Janez E, Acuna AU, Amat-Guerri F, Geijo E, Santos-Beneit AM, Veldman RJ, Mollinedo F (2004) Intracellular triggering of Fas aggregation and recruitment of apoptotic molecules into Fas-enriched rafts in selective tumor cell apoptosis. J Exp Med 200:353–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gajate C, Mollinedo F (2001) The antitumor ether lipid ET-18-OCH(3) induces apoptosis through translocation and capping of Fas/CD95 into membrane rafts in human leukemic cells. Blood 98:3860–3863

    Article  CAS  PubMed  Google Scholar 

  22. Gajate C, Mollinedo F (2007) Edelfosine and perifosine induce selective apoptosis in multiple myeloma by recruitment of death receptors and downstream signaling molecules into lipid rafts. Blood 109:711–719

    Article  CAS  PubMed  Google Scholar 

  23. Mollinedo F, de la Iglesia-Vicente J, Gajate C, Estella-Hermoso de Mendoza A, Villa-Pulgarin JA, Campanero MA, Blanco-Prieto MJ (2010) Lipid raft-targeted therapy in multiple myeloma. Oncogene 29:3748–3757

    Article  CAS  PubMed  Google Scholar 

  24. Mollinedo F, de la Iglesia-Vicente J, Gajate C, Estella-Hermoso de Mendoza A, Villa-Pulgarin JA, de Frias M, Roue G, Gil J, Colomer D, Campanero MA, Blanco-Prieto MJ (2010) In vitro and In vivo selective antitumor activity of Edelfosine against mantle cell lymphoma and chronic lymphocytic leukemia involving lipid rafts. Clin Cancer Res 16:2046–2054

    Article  CAS  PubMed  Google Scholar 

  25. Gajate C, Mollinedo F (2015) Lipid raft-mediated Fas/CD95 apoptotic signaling in leukemic cells and normal leukocytes and therapeutic implications. J Leukoc Biol 98:739–759

    Article  CAS  PubMed  Google Scholar 

  26. Gajate C, Gonzalez-Camacho F, Mollinedo F (2009) Involvement of raft aggregates enriched in Fas/CD95 death-inducing signaling complex in the antileukemic action of edelfosine in Jurkat cells. PLoS One 4:e5044

    Article  PubMed  PubMed Central  Google Scholar 

  27. Reis-Sobreiro M, Gajate C, Mollinedo F (2009) Involvement of mitochondria and recruitment of Fas/CD95 signaling in lipid rafts in resveratrol-mediated antimyeloma and antileukemia actions. Oncogene 28:3221–3234

    Article  CAS  PubMed  Google Scholar 

  28. Gajate C, Mollinedo F (2005) Cytoskeleton-mediated death receptor and ligand concentration in lipid rafts forms apoptosis-promoting clusters in cancer chemotherapy. J Biol Chem 280:11641–11647

    Article  CAS  PubMed  Google Scholar 

  29. Gajate C, Gonzalez-Camacho F, Mollinedo F (2009) Lipid raft connection between extrinsic and intrinsic apoptotic pathways. Biochem Biophys Res Commun 380:780–784

    Article  CAS  PubMed  Google Scholar 

  30. Mollinedo F, Gajate C (2010) Lipid rafts and clusters of apoptotic signaling molecule-enriched rafts in cancer therapy. Future Oncol 6:811–821

    Article  CAS  PubMed  Google Scholar 

  31. Mollinedo F, Gajate C (2010) Lipid rafts, death receptors and CASMERs: new insights for cancer therapy. Future Oncol 6:491–494

    Article  CAS  PubMed  Google Scholar 

  32. Gajate C, Mollinedo F (2015) Lipid rafts and raft-mediated supramolecular entities in the regulation of CD95 death receptor apoptotic signaling. Apoptosis 20:584–606

    Article  CAS  PubMed  Google Scholar 

  33. Gajate C, Mollinedo F (2014) Lipid rafts, endoplasmic reticulum and mitochondria in the antitumor action of the alkylphospholipid analog edelfosine. Anticancer Agents Med Chem 14:509–527

    Article  CAS  PubMed  Google Scholar 

  34. Munro S (2003) Lipid rafts: elusive or illusive? Cell 115:377–388

    Article  CAS  PubMed  Google Scholar 

  35. Lorent JH, Diaz-Rohrer B, Lin X, Spring K, Gorfe AA, Levental KR, Levental I (2017) Structural determinants and functional consequences of protein affinity for membrane rafts. Nat Commun 8:1219

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lingwood D, Simons K (2007) Detergent resistance as a tool in membrane research. Nat Protoc 2:2159–2165

    Article  CAS  PubMed  Google Scholar 

  37. Gajate C, Mollinedo F (2017) Isolation of lipid rafts through discontinuous sucrose gradient centrifugation and Fas/CD95 death receptor localization in raft fractions. Methods Mol Biol 1557:125–138

    Article  CAS  PubMed  Google Scholar 

  38. Brown DA, Rose JK (1992) Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68:533–544

    Article  CAS  PubMed  Google Scholar 

  39. Lai EC (2003) Lipid rafts make for slippery platforms. J Cell Biol 162:365–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pike LJ (2004) Lipid rafts: heterogeneity on the high seas. Biochem J 378:281–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Brown DA, London E (1997) Structure of detergent-resistant membrane domains: does phase separation occur in biological membranes? Biochem Biophys Res Commun 240:1–7

    Article  CAS  PubMed  Google Scholar 

  42. Schroeder RJ, Ahmed SN, Zhu Y, London E, Brown DA (1998) Cholesterol and sphingolipid enhance the Triton X-100 insolubility of glycosylphosphatidylinositol-anchored proteins by promoting the formation of detergent-insoluble ordered membrane domains. J Biol Chem 273:1150–1157

    Article  CAS  PubMed  Google Scholar 

  43. Schuck S, Honsho M, Ekroos K, Shevchenko A, Simons K (2003) Resistance of cell membranes to different detergents. Proc Natl Acad Sci U S A 100:5795–5800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bohuslav J, Cinek T, Horejsi V (1993) Large, detergent-resistant complexes containing murine antigens Thy-1 and Ly-6 and protein tyrosine kinase p56lck. Eur J Immunol 23:825–831

    Article  CAS  PubMed  Google Scholar 

  45. Madore N, Smith KL, Graham CH, Jen A, Brady K, Hall S, Morris R (1999) Functionally different GPI proteins are organized in different domains on the neuronal surface. EMBO J 18:6917–6926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Drevot P, Langlet C, Guo XJ, Bernard AM, Colard O, Chauvin JP, Lasserre R, He HT (2002) TCR signal initiation machinery is pre-assembled and activated in a subset of membrane rafts. EMBO J 21:1899–1908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Roper K, Corbeil D, Huttner WB (2000) Retention of prominin in microvilli reveals distinct cholesterol-based lipid micro-domains in the apical plasma membrane. Nat Cell Biol 2:582–592

    Article  CAS  PubMed  Google Scholar 

  48. Drobnik W, Borsukova H, Bottcher A, Pfeiffer A, Liebisch G, Schutz GJ, Schindler H, Schmitz G (2002) Apo AI/ABCA1-dependent and HDL3-mediated lipid efflux from compositionally distinct cholesterol-based microdomains. Traffic 3:268–278

    Article  PubMed  Google Scholar 

  49. Slimane TA, Trugnan G, Van ISC, Hoekstra D (2003) Raft-mediated trafficking of apical resident proteins occurs in both direct and transcytotic pathways in polarized hepatic cells: role of distinct lipid microdomains. Mol Biol Cell 14:611–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chamberlain LH (2004) Detergents as tools for the purification and classification of lipid rafts. FEBS Lett 559:1–5

    Article  CAS  PubMed  Google Scholar 

  51. Radeva G, Sharom FJ (2004) Isolation and characterization of lipid rafts with different properties from RBL-2H3 (rat basophilic leukaemia) cells. Biochem J 380:219–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ilangumaran S, Arni S, van Echten-Deckert G, Borisch B, Hoessli DC (1999) Microdomain-dependent regulation of Lck and Fyn protein-tyrosine kinases in T lymphocyte plasma membranes. Mol Biol Cell 10:891–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rabani V, Davani S, Gambert-Nicot S, Meneveau N, Montange D (2016) Comparative lipidomics and proteomics analysis of platelet lipid rafts using different detergents. Platelets 27:634–641

    Article  CAS  PubMed  Google Scholar 

  54. Heerklotz H (2002) Triton promotes domain formation in lipid raft mixtures. Biophys J 83:2693–2701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Heerklotz H, Szadkowska H, Anderson T, Seelig J (2003) The sensitivity of lipid domains to small perturbations demonstrated by the effect of Triton. J Mol Biol 329:793–799

    Article  CAS  PubMed  Google Scholar 

  56. Ingelmo-Torres M, Gaus K, Herms A, Gonzalez-Moreno E, Kassan A, Bosch M, Grewal T, Tebar F, Enrich C, Pol A (2009) Triton X-100 promotes a cholesterol-dependent condensation of the plasma membrane. Biochem J 420:373–381

    Article  CAS  PubMed  Google Scholar 

  57. Christian AE, Haynes MP, Phillips MC, Rothblat GH (1997) Use of cyclodextrins for manipulating cellular cholesterol content. J Lipid Res 38:2264–2272

    Article  CAS  PubMed  Google Scholar 

  58. Cruz-Chu ER, Malafeev A, Pajarskas T, Pivkin IV, Koumoutsakos P (2014) Structure and response to flow of the glycocalyx layer. Biophys J 106:232–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Prydz K (2015) Determinants of glycosaminoglycan (GAG) structure. Biomolecules 5:2003–2022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. James GT (1978) Inactivation of the protease inhibitor phenylmethylsulfonyl fluoride in buffers. Anal Biochem 86:574–579

    Article  CAS  PubMed  Google Scholar 

  61. Schon A, Freire E (1989) Thermodynamics of intersubunit interactions in cholera toxin upon binding to the oligosaccharide portion of its cell surface receptor, ganglioside GM1. Biochemistry 28:5019–5024

    Article  CAS  PubMed  Google Scholar 

  62. Harder T, Scheiffele P, Verkade P, Simons K (1998) Lipid domain structure of the plasma membrane revealed by patching of membrane components. J Cell Biol 141:929–942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wolf AA, Jobling MG, Wimer-Mackin S, Ferguson-Maltzman M, Madara JL, Holmes RK, Lencer WI (1998) Ganglioside structure dictates signal transduction by cholera toxin and association with caveolae-like membrane domains in polarized epithelia. J Cell Biol 141:917–927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by Spanish Ministry of Science, Innovation and Universities grant SAF2017-89672-R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faustino Mollinedo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gajate, C., Mollinedo, F. (2021). Lipid Raft Isolation by Sucrose Gradient Centrifugation and Visualization of Raft-Located Proteins by Fluorescence Microscopy: The Use of Combined Techniques to Assess Fas/CD95 Location in Rafts During Apoptosis Triggering. In: Bieberich, E. (eds) Lipid Rafts. Methods in Molecular Biology, vol 2187. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0814-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0814-2_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0813-5

  • Online ISBN: 978-1-0716-0814-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics