Skip to main content

Computational Antigen Discovery for Eukaryotic Pathogens Using Vacceed

  • Protocol
  • First Online:
Vaccine Delivery Technology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2183))

Abstract

Bioinformatics programs have been developed that exploit informative signals encoded within protein sequences to predict protein characteristics. Unfortunately, there is no program as yet that can predict whether a protein will induce a protective immune response to a pathogen. Nonetheless, predicting those pathogen proteins most likely from those least likely to induce an immune response is feasible when collectively using predicted protein characteristics. Vacceed is a computational pipeline that manages different standalone bioinformatics programs to predict various protein characteristics, which offer supporting evidence on whether a protein is secreted or membrane -associated. A set of machine learning algorithms predicts the most likely pathogen proteins to induce an immune response given the supporting evidence. This chapter provides step by step descriptions of how to configure and operate Vacceed for a eukaryotic pathogen of the user’s choice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee D, Redfern O, Orengo C (2007) Predicting protein function from sequence and structure. Nat Rev Mol Cell Biol 8(12):995–1005. https://doi.org/10.1038/nrm2281

    Article  CAS  PubMed  Google Scholar 

  2. Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2(4):953–971. https://doi.org/10.1038/nprot.2007.131

    Article  CAS  PubMed  Google Scholar 

  3. Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8(10):785–786. https://doi.org/10.1038/nmeth.1701

    Article  CAS  Google Scholar 

  4. Krogh A, Larsson B, von Heijne G, Sonnhammer ELL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305(3):567–580. https://doi.org/10.1006/jmbi.2000.4315

    Article  CAS  Google Scholar 

  5. Goodswen SJ, Kennedy PJ, Ellis JT (2014) Vacceed: a high-throughput in silico vaccine candidate discovery pipeline for eukaryotic pathogens based on reverse vaccinology. Bioinformatics 30(16):2381–2383. https://doi.org/10.1093/bioinformatics/btu300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rappuoli R (2000) Reverse vaccinology. Curr Opin Microbiol 3(5):445–450. https://doi.org/10.1016/s1369-5274(00)00119-3

    Article  CAS  PubMed  Google Scholar 

  7. Goodswen SJ, Kennedy PJ, Ellis JT (2013) A guide to in silico vaccine discovery for eukaryotic pathogens. Brief Bioinform 14(6):753–774. https://doi.org/10.1093/bib/bbs066

    Article  CAS  PubMed  Google Scholar 

  8. Goodswen SJ, Kennedy PJ, Ellis JT (2013) A novel strategy for classifying the output from an in silico vaccine discovery pipeline for eukaryotic pathogens using machine learning algorithms. BMC Bioinformatics 14:315. https://doi.org/10.1186/1471-2105-14-315

    Article  PubMed  PubMed Central  Google Scholar 

  9. Goodswen SJ, Kennedy PJ, Ellis JT (2017) On the application of reverse vaccinology to parasitic diseases: a perspective on feature selection and ranking of vaccine candidates. Int J Parasitol 47(12):779–790. https://doi.org/10.1016/j.ijpara.2017.08.004

    Article  CAS  PubMed  Google Scholar 

  10. Palmieri N, Shrestha A, Ruttkowski B, Beck T, Vogl C, Tomley F, Blake DP, Joachim A (2017) The genome of the protozoan parasite Cystoisospora suis and a reverse vaccinology approach to identify vaccine candidates. Int J Parasitol 47(4):189–202. https://doi.org/10.1016/j.ijpara.2016.11.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Armenteros JJA, Tsirigos KD, Sonderby CK, Petersen TN, Winther O, Brunak S, von Heijne G, Nielsen H (2019) SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol 37(4):420. https://doi.org/10.1038/s41587-019-0036-z

    Article  CAS  Google Scholar 

  12. Horton P, Park KJ, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, Nakai K (2007) WoLF PSORT: protein localization predictor. Nucleic Acids Res 35:W585–W587. https://doi.org/10.1093/nar/gkm259

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kall L, Krogh A, Sonnhammer ELL (2004) A combined transmembrane topology and signal peptide prediction method. J Mol Biol 338(5):1027–1036. https://doi.org/10.1016/j.jmb.2004.03.016

    Article  CAS  PubMed  Google Scholar 

  14. Armenteros JJA, Sonderby CK, Sonderby SK, Nielsen H, Winther O (2017) DeepLoc: prediction of protein subcellular localization using deep learning. Bioinformatics 33(21):3387–3395. https://doi.org/10.1093/bioinformatics/btx431

    Article  CAS  Google Scholar 

  15. Vita R, Zarebski L, Greenbaum JA, Emami H, Hoof I, Salimi N, Damle R, Sette A, Peters B (2010) The immune epitope database 2.0. Nucleic Acids Res 38:D854–D862. https://doi.org/10.1093/nar/gkp1004

    Article  CAS  PubMed  Google Scholar 

  16. Bui HH, Sidney J, Peters B, Sathiamurthy M, Sinichi A, Purton KA, Mothe BR, Chisari FV, Watkins DI, Sette A (2005) Automated generation and evaluation of specific MHC binding predictive tools: ARB matrix applications. Immunogenetics 57(5):304–314. https://doi.org/10.1007/s00251-005-0798-y

    Article  CAS  PubMed  Google Scholar 

  17. Wang P, Sidney J, Dow C, Mothe B, Sette A, Peters B (2008) A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach. PLoS Comput Biol 4(4). https://doi.org/10.1371/journal.pcbi.1000048

Download references

Acknowledgments

SJG gratefully acknowledges Zoetis (Pfizer) Animal Health for funding the development of Vacceed through a PhD scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John T. Ellis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Goodswen, S.J., Kennedy, P.J., Ellis, J.T. (2021). Computational Antigen Discovery for Eukaryotic Pathogens Using Vacceed. In: Pfeifer, B.A., Hill, A. (eds) Vaccine Delivery Technology. Methods in Molecular Biology, vol 2183. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0795-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0795-4_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0794-7

  • Online ISBN: 978-1-0716-0795-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics