Skip to main content

G-Protein-Coupled Receptor Expression and Purification

  • Protocol
  • First Online:
Book cover Protein Downstream Processing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2178))

Abstract

G-protein-coupled receptors (GPCRs) are integral proteins of the cell membrane and are directly involved in the regulation of many biological functions and in drug targeting. However, our knowledge of GPCRs’ structure and function remains limited. The first bottleneck in GPCR studies is producing sufficient quantities of soluble, functional, and stable receptors. Currently, GPCR production largely depends on the choice of the host system and the type of detergent used to extract the GPCR from the cell membrane and stabilize the protein outside the membrane bilayer. Here, we present three protocols that we employ in our lab to produce and solubilize stable GPCRs: (1) cell-free in vitro translation, (2) HEK cells, and (3) Escherichia coli. Stable receptors can be purified using immunoaffinity chromatography and gel filtration, and can be analyzed with standard biophysical techniques and biochemical assays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Klabunde T, Hessler G (2002) Drug design strategies for targeting G-protein-coupled receptors. Chembiochem 3:928–944

    Article  CAS  PubMed  Google Scholar 

  2. Lundstrom K (2005) Structural biology of G protein-coupled receptors. Bioorg Med Chem Lett 15:3654–3657

    Article  CAS  PubMed  Google Scholar 

  3. Protein Data Bank (2019). http://www.rcsb.org

  4. Membrane Proteins of Known Structure run by the Stephen White Laboratory at UCI (2018). http://blanco.biomol.uci.edu/mpstruc/

  5. Jaakola V-P et al (2008) The 2.6 Å crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322(5905):1211–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rasmussen SGF et al (2007) Crystal structure of the human β2 adrenergic G-protein-coupled receptor. Nature 450(7168):383–387

    Article  CAS  PubMed  Google Scholar 

  7. Warne T et al (2008) Structure of a β1-adrenergic G protein-coupled receptor. Nature 454(7203):486–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wu B et al (2010) Structures of the CXCR4 chemokine receptor in complex with small molecule and cyclic peptide antagonists. Science 330(6007):1066–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shimamura T et al (2012) Structure of the human histamine H1 receptor complex with doxepin. Nature 475(7354):65–70

    Article  CAS  Google Scholar 

  10. Hanson MA et al (2012) Crystal structure of a lipid G protein-coupled receptor. Science 335(6070):851–855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kruse AC et al (2012) Structure and dynamics of the M3 muscarinic acetylcholine receptor. Nature 482(7386):552–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wu H et al (2012) Structure of the human κ-opioid receptor in complex with JDTic. Nature 485(7398):327–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Manglik A et al (2012) Crystal structure of the μ-opioid receptor bound to a morphinan antagonist. Nature 485(7398):321–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Granier S et al (2012) Structure of the δ-opioid receptor bound to naltrindole. Nature 485:400–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Thompson AA et al (2012) Structure of the nociceptin/orphanin FQ receptor in complex with a peptide mimetic. Nature 485(7398):395–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang C et al (2012) High-resolution crystal structure of human protease-activated receptor 1. Nature 492(7429):387–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tan Q et al (2013) Structure of the CCR5 chemokine receptor—HIV entry inhibitor Maraviroc complex. Science 341(6152):1387–1390

    Article  CAS  PubMed  Google Scholar 

  18. Wang C et al (2013) Structure of the human smoothened receptor bound to an antitumour agent. Nature 497(7449):338–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang C et al (2013b) Structural basis for molecular recognition at seratonin receptors. Science 340(6132):610–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Siu FY et al (2013) Structure of the human glucagon class B G-protein-coupled receptor. Nature 499(7459):444–449

    Article  CAS  PubMed  Google Scholar 

  21. Burg JS et al (2015) Structural basis for chemokine recognition and activation of a viral G protein-coupled receptor. Science 347(6226):1113–1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fenalti G et al (2014) Molecular control of d-opioid receptor signalling. Nature 506(7487):191–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Thal DM et al (2016) Crystal structures of the M1 and M4 muscarinic acetylcholine receptors. Nature 531(7594):335–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yin J, Mobarec JC, Kolb P, Rosenbaum DM (2015) Crystal structure of the human OX2 orexin receptor bound to the insomnia drug suvorexant. Nature 519(7542):247–250

    Article  CAS  PubMed  Google Scholar 

  25. Yin J et al (2016) Structure and ligand-binding mechanism of the human OX1 and OX2 orexin receptors. Nat Struct Mol Biol 23(4):293–299

    Article  CAS  PubMed  Google Scholar 

  26. Shihoya W et al (2016) Activation mechanism of the endothelin ETB receptor by endothelin-1. Nature 537(7620):363–368

    Article  CAS  PubMed  Google Scholar 

  27. Hua T et al (2016) Crystal structure of the human cannabinoid receptor CB1. Cell 167:750–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wacker D et al (2013) Structural features for functional selectivity at seratonin receptors. Science 340(6132):615–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hollenstein K et al (2013) Structure of class B GPCR corticotropin-releasing factor receptor 1. Nature 499(7459):438–443

    Article  CAS  PubMed  Google Scholar 

  30. Geng Y, Bush M, Mosyak L, Wang F, Fan QR (2013) Structural mechanism of ligand activation in human GABAB receptor. Nature 504(7479):254–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wu H et al (2014) Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator. Science 344(6179):58–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Doré AS et al (2014) Structure of class C GPCR metabotropic glutamate receptor 5 transmembrane domain. Nature 511(7511):557–562

    Article  CAS  PubMed  Google Scholar 

  33. Chrencik JE et al (2015) Crystal structure of antagonist bound human lysophosphatidic acid receptor 1. Cell 161:1633–1643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang H et al (2015) Structure of the angiotensin receptor revealed by serial femtosecond crystallography. Cell 161:833–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Byrne EFX et al (2016) Structural basis of smoothened regulation by its extracellular domains. Nature 535(7613):517–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chien YET et al (2010) Structure of the human dopamine D3 receptor in comlex with a D2/D3 selective antagonist. Science 330(6007):1091–1095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. White JF et al (2012) Structure of the agonist-bound neurotensin receptor. Nature 490(7421):508–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang K et al (2014) Structure of the human P2Y12 receptor in complex with an antithrombotic drug. Nature 509(7498):115–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang D et al (2015) Two disparate ligand-binding sites in the human P2Y1 receptor. Nature 520(7547):317–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Srivastava A et al (2014) High-resolution structure of the human GPR40 receptor bound to allosteric agonist TAK-875. Nature 513(7516):124–127

    Article  CAS  PubMed  Google Scholar 

  41. Haga K et al (2012) Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist. Nature 482(7386):547–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cherezov V et al (2007) High resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor. Science 318(5854):1258–1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Klammt C, Schwarz D, Eifler N et al (2007) Cell-free production of G protein-coupled receptors for functional and structural studies. J Struct Biol 158:482–493

    Article  CAS  PubMed  Google Scholar 

  44. Reeves PJ, Thurmond RL, Khorana HG (1996) Structure and function in rhodopsin: high level expression of a synthetic bovine opsin gene and its mutants in stable mammalian cell lines. Proc Natl Acad Sci U S A 93:11487–11492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Miroux B, Walker JE (1996) Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J Mol Biol 260:289–298

    Article  CAS  PubMed  Google Scholar 

  46. Wagner S, Klepsch MM, Schlegel S et al (2008) Tuning Escherichia coli for membrane protein overexpression. Proc Natl Acad Sci U S A 105:14371–14376

    Article  PubMed  PubMed Central  Google Scholar 

  47. Hampe W, Voss RH, Haase W et al (2000) Engineering of a proteolytically stable human beta(2)-adrenergic receptor/maltose-binding protein fusion and production of the chimeric protein in Escherichia coli and baculovirus infected insect cells. J Biotechnol 77:219–234

    Article  CAS  PubMed  Google Scholar 

  48. Mouillac B, Caron M, Bonin H et al (1992) Agonist-modulated palmitoylation of b2-adrenergic receptor in Sf9 cells. J Biol Chem 267:21733–21737

    Article  CAS  PubMed  Google Scholar 

  49. Panneels V, Sinning I (2010) Membrane protein expression in the eyes of transgenic flies. Methods Mol Biol 601:135–147

    Article  CAS  PubMed  Google Scholar 

  50. Zhang L, Salom D, He JH et al (2005) Expression of functional G protein-coupled receptors in photoreceptors of transgenic Xenopus laevis. Biochemistry 44:14509–14518

    Article  CAS  PubMed  Google Scholar 

  51. Li N, Salom D, Zhang L et al (2007) Heterologous expression of the adenosine A1 receptor in transgenic mouse retina. Biochemistry 46:8350–8359

    Article  CAS  PubMed  Google Scholar 

  52. Sarramegna V, Muller I, Mousseau G et al (2005) Solubilization, purification and mass spectrometry analysis of the human mu-opioid receptor expressed in Pichia pastoris. Protein Expr Purif 43:85–93

    Article  CAS  PubMed  Google Scholar 

  53. Dowell SJ, Brown AJ (2002) Yeast assays for G-protein coupled receptors. Receptors Channels 8:343–352

    Article  CAS  PubMed  Google Scholar 

  54. Grisshammer R, Duckworth R, Henderson R (1993) Expression of a rat neurotensin receptor in Escherichia coli. Biochem J 295:571–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sarramegna V, Talmont F, Demange P et al (2003) Heterologous expression of G-protein-coupled receptors: comparison of expression systems from the standpoint of large-scale production and purification. Cell Mol Life Sci 60:1529–1546

    Article  CAS  PubMed  Google Scholar 

  56. McCusker EC, Bane SE, O’Malley MA et al (2007) Heterologous GPCR expression: A bottleneck to obtaining crystal structures. Biotechnol Prog 23:540–547

    Article  CAS  PubMed  Google Scholar 

  57. Tate CG, Grisshammer R (1996) Heterologous expression of G-protein-coupled receptors. Trends Biotechnol 14:426–430

    Article  CAS  PubMed  Google Scholar 

  58. Ishihara G, Goto M, Saeki M et al (2005) Expression of G protein coupled receptors in a cell-free translational system using detergents and thioredoxin-fusion vectors. Protein Expres Purif 41:27–37

    Article  CAS  Google Scholar 

  59. Corin K, Baaske P, Ravel DB et al (2011) A robust and rapid method of producing soluble, stable, and functional G-protein coupled receptors. PLoS One 6:e23036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Corin K, Baaske P, Ravel DB et al (2011) Designer lipid-like peptides: a class of detergents for studying functional olfactory receptors using commercial cell-free systems. PLoS One 6:e25067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang XQ, Corin K, Baaske P et al (2011) Peptide surfactants for cell-free production of functional G protein-coupled receptors. Proc Natl Acad Sci U S A 108:9049–9054

    Article  PubMed  PubMed Central  Google Scholar 

  62. Koutsopoulos S, Kaiser L, Eriksson HM et al (2012) Designer peptide surfactants stabilize diverse functional membrane proteins. Chem Soc Rev 41:1721–1728

    Article  CAS  PubMed  Google Scholar 

  63. Ren H, Yu D, Ge B et al (2009) High-level production, solubilization and purification of synthetic human GPCR chemokine receptors CCR5, CCR3, CXCR4 and CX3CR1. PLoS One 4:e4509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gubellini F, Verdon G, Karpowich NK et al (2011) Physiological response to membrane protein overexpression in E. coli. Mol Cell Proteomics 10:1–17

    Article  CAS  Google Scholar 

  65. King K, Dohlman HG, Thorner J et al (1990) Control of yeast mating signal transduction by a mammalian beta-2-adrenergic receptor and Gs alpha-subunit. Science 250:121–123

    Article  CAS  PubMed  Google Scholar 

  66. Corin K, Baaske P, Geissler S et al (2011) Structure and function analyses of the purified GPCR human vomeronasal type 1 receptor 1. Sci Rep 1:172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Corin K, Pick H, Baaske P et al (2012) Insertion of T4-lysozyme (T4L) can be a useful tool for studying olfactory-related GPCRs. Mol BioSyst 8:1750–1759

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Corin, K., Tegler, L.T., Koutsopoulos, S. (2021). G-Protein-Coupled Receptor Expression and Purification. In: Labrou, N.E. (eds) Protein Downstream Processing. Methods in Molecular Biology, vol 2178. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0775-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0775-6_28

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0774-9

  • Online ISBN: 978-1-0716-0775-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics