Skip to main content

Extracellular Vesicles and Their Roles in Cancer Progression

  • Protocol
  • First Online:
Book cover Cancer Cell Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2174))

Abstract

Extracellular vesicles (EVs) produced by cancer cells function as a unique form of intercellular communication that can promote cell growth and survival, help shape the tumor microenvironment, and increase invasive and metastatic activity. There are two major classes of EVs, microvesicles (MVs) and exosomes, and they differ in how they are formed. MVs are generated by the outward budding and fission of the plasma membrane. On the other hand, exosomes are derived as multivesicular bodies (MVBs) fuse with the plasma membrane and release their contents. What makes EVs especially interesting is how they mediate their effects. Both MVs and exosomes have been shown to contain a wide-variety of bioactive cargo, including cell surface, cytosolic, and nuclear proteins, as well as RNA transcripts, micro-RNAs (miRNAs), and even fragments of DNA. EVs, and their associated cargo, can be transferred to other cancer cells, as well as to normal cell types, causing the recipient cells to undergo phenotypic changes that promote different aspects of cancer progression. These findings, combined with those demonstrating that the amounts and contents of EVs produced by cancer cells can vary depending on their cell of origin, stage of development, or response to therapies, have raised the exciting possibility that EVs can be used for diagnostic purposes. Moreover, the pharmaceutical community is aggressively pursuing the use of EVs as a potential drug delivery platform. Here, in this chapter, we will highlight what is currently known about how EVs are generated, how they impact cancer progression, and the different ways they are being exploited for clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wilson KJ, Mill C, Lambert S et al (2012) EGFR ligands exhibit functional differences in models of paracrine and autocrine signaling. Growth Factors 30:107–116. https://doi.org/10.3109/08977194.2011.649918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Latifkar A, Hur YH, Sanchez JC et al (2019) New insights into extracellular vesicle biogenesis and function. J Cell Sci 132:jcs222406. https://doi.org/10.1242/jcs.222406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Maas SLN, Breakefield XO, Weaver AM (2017) Extracellular vesicles: unique intercellular delivery vehicles. Trends Cell Biol 27:172–188. https://doi.org/10.1016/j.tcb.2016.11.003

    Article  CAS  PubMed  Google Scholar 

  4. Hessvik NP, Llorente A (2018) Current knowledge on exosome biogenesis and release. Cell Mol Life Sci 75:193–208. https://doi.org/10.1007/s00018-017-2595-9

    Article  CAS  PubMed  Google Scholar 

  5. Van Niel G, D’Angelo G, Raposo G (2018) Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 19:213–228. https://doi.org/10.1038/nrm.2017.125

    Article  CAS  PubMed  Google Scholar 

  6. Jeppesen DK, Fenix AM, Franklin JL et al (2019) Reassessment of exosome composition. Cell 177:428–445.e18. https://doi.org/10.1016/j.cell.2019.02.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wolf P (1967) The nature and significance of platelet products in human plasma. Br J Haematol 13:269–288. https://doi.org/10.1111/j.1365-2141.1967.tb08741.x

    Article  CAS  PubMed  Google Scholar 

  8. Harding C, Heuser J, Stahl P (1983) Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J Cell Biol 97:329–339. https://doi.org/10.1083/jcb.97.2.329

    Article  CAS  PubMed  Google Scholar 

  9. Pan BT, Johnstone RM (1983) Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell 33:967–978. https://doi.org/10.1016/0092-8674(83)90040-5

    Article  CAS  PubMed  Google Scholar 

  10. Al-Nedawi K, Meehan B, Micallef J et al (2008) Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol 10:619–624. https://doi.org/10.1038/ncb1725

    Article  CAS  PubMed  Google Scholar 

  11. Skog J, Würdinger T, van Rijn S et al (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10:1470–1476. https://doi.org/10.1038/ncb1800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Minciacchi VR, Freeman MR, Di Vizio D (2015) Extracellular vesicles in cancer: exosomes, microvesicles and the emerging role of large oncosomes. Semin Cell Dev Biol 40:41–51. https://doi.org/10.1016/j.semcdb.2015.02.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Di Vizio D, Morello M, Dudley AC et al (2012) Large oncosomes in human prostate cancer tissues and in the circulation of mice with metastatic disease. Am J Pathol 181:1573–1584. https://doi.org/10.1016/j.ajpath.2012.07.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Théry C, Witwer KW, Aikawa E et al (2018) Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 7:1535750. https://doi.org/10.1080/20013078.2018.1535750

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kowal J, Arras G, Colombo M et al (2016) Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci 113:E968–E977. https://doi.org/10.1073/pnas.1521230113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen G, Huang AC, Zhang W et al (2018) Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature 560:382–386. https://doi.org/10.1038/s41586-018-0392-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Poggio M, Hu T, Pai C et al (2019) Suppression of exosomal PD-L1 induces systemic anti-tumor immunity and memory. Cell 177:414–427.e13. https://doi.org/10.1016/j.cell.2019.02.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Theodoraki M, Yerneni SS, Hoffmann TK et al (2018) Clinical significance of PD-L1 þ exosomes in plasma of head and neck cancer patients. Clin Cancer Res 24:896–906. https://doi.org/10.1158/1078-0432.CCR-17-2664

    Article  CAS  PubMed  Google Scholar 

  19. Ricklefs FL, Alayo Q, Krenzlin H et al (2018) Immune evasion mediated by PD-L1 on glioblastoma-derived extracellular vesicles. Sci Adv 4:eaar2766. https://doi.org/10.1126/sciadv.aar2766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kreger BT, Dougherty AL, Greene KS et al (2016) Microvesicle cargo and function changes upon induction of cellular transformation. J Biol Chem 291:19774–19785. https://doi.org/10.1074/jbc.M116.725705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang H, Freitas D, Kim HS et al (2018) Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. Nat Cell Biol 20:332–343. https://doi.org/10.1038/s41556-018-0040-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Antonyak MA, Li B, Boroughs LK et al (2011) Cancer cell-derived microvesicles induce transformation by transferring tissue transglutaminase and fibronectin to recipient cells. Proc Natl Acad Sci U S A 108:4852–4857. https://doi.org/10.1073/pnas.1017667108

    Article  PubMed  PubMed Central  Google Scholar 

  23. Di Vizio D, Kim J, Hager MH et al (2009) Oncosome formation in prostate cancer: association with a region of frequent chromosomal deletion in metastatic disease. Cancer Res 69:5601–5609. https://doi.org/10.1158/0008-5472.CAN-08-3860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li B, Antonyak MA, Zhang J, Cerione RA (2012) RhoA triggers a specific signaling pathway that generates transforming microvesicles in cancer cells. Oncogene 31:4740–4749. https://doi.org/10.1038/onc.2011.636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wada A, Nishida E, Mizuno K et al (2002) Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature 393:809–812. https://doi.org/10.1038/31735

    Article  CAS  Google Scholar 

  26. Tague SE, Muralidharan V, D’Souza-Schorey C (2004) ADP-ribosylation factor 6 regulates tumor cell invasion through the activation of the MEK/ERK signaling pathway. Proc Natl Acad Sci 101:9671–9676. https://doi.org/10.1073/pnas.0403531101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hashimoto S, Onodera Y, Hashimoto A et al (2004) Requirement for Arf6 in breast cancer invasive activities. Proc Natl Acad Sci 101:6647–6652. https://doi.org/10.1073/pnas.0401753101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Marchesin V, Castro-Castro A, Lodillinsky C et al (2015) ARF6-JIP3/4 regulate endosomal tubules for MT1-MMP exocytosis in cancer invasion. J Cell Biol 211:339–358. https://doi.org/10.1083/jcb.201506002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Muralidharan-Chari V, Clancy J, Plou C et al (2009) ARF6-regulated shedding of tumor cell-derived plasma membrane microvesicles. Curr Biol 19:1875–1885. https://doi.org/10.1016/j.cub.2009.09.059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Muralidharan-Chari V, Clancy JW, Sedgwick A, D’Souza-Schorey C (2010) Microvesicles: mediators of extracellular communication during cancer progression. J Cell Sci 123:1603–1611. https://doi.org/10.1242/jcs.064386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tricarico C, Clancy J, D’Souza-Schorey C (2017) Biology and biogenesis of shed microvesicles. Small GTPases 8:220–232. https://doi.org/10.1080/21541248.2016.1215283

    Article  CAS  PubMed  Google Scholar 

  32. Piccin A, Murphy WG, Smith OP (2007) Circulating microparticles: pathophysiology and clinical implications. Blood Rev 21:157–171. https://doi.org/10.1016/j.blre.2006.09.001

    Article  CAS  PubMed  Google Scholar 

  33. Hsu PP, Sabatini DM (2008) Cancer cell metabolism: Warburg and beyond. Cell 134:703–707. https://doi.org/10.1016/j.cell.2008.08.021

    Article  CAS  PubMed  Google Scholar 

  34. Lukey MJ, Katt WP, Cerione RA (2017) Targeting amino acid metabolism for cancer therapy. Drug Discov Today 22:796–804. https://doi.org/10.1016/j.drudis.2016.12.003

    Article  CAS  PubMed  Google Scholar 

  35. Wilson KF, Erickson JW, Antonyak MA et al (2013) Rho GTPases and their roles in cancer metabolism. Trends Mol Med 19:74–82. https://doi.org/10.1109/TMI.2012.2196707.Separate

    Article  CAS  PubMed  Google Scholar 

  36. Rilla K, Pasonen-Seppänen S, Deen AJ et al (2013) Hyaluronan production enhances shedding of plasma membrane-derived microvesicles. Exp Cell Res 319:2006–2018. https://doi.org/10.1016/j.yexcr.2013.05.021

    Article  CAS  PubMed  Google Scholar 

  37. Henne WM, Stenmark H, Emr SD (2013) Molecular mechanisms of the membrane sculpting ESCRT pathway. Cold Spring Harb Perspect Biol 5:a016766–a016766. https://doi.org/10.1101/cshperspect.a016766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Christ L, Raiborg C, Wenzel EM et al (2017) Cellular functions and molecular mechanisms of the ESCRT membrane-scission machinery. Trends Biochem Sci 42:42–56. https://doi.org/10.1016/j.tibs.2016.08.016

    Article  CAS  PubMed  Google Scholar 

  39. Colombo M, Moita C, van Niel G et al (2013) Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J Cell Sci 126:5553–5565. https://doi.org/10.1242/jcs.128868

    Article  CAS  PubMed  Google Scholar 

  40. Baietti MF, Zhang Z, Mortier E et al (2012) Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nat Cell Biol 14:677–685. https://doi.org/10.1038/ncb2502

    Article  CAS  PubMed  Google Scholar 

  41. Stuffers S, Sem Wegner C, Stenmark H, Brech A (2009) Multivesicular endosome biogenesis in the absence of ESCRTs. Traffic 10:925–937. https://doi.org/10.1111/j.1600-0854.2009.00920.x

    Article  CAS  PubMed  Google Scholar 

  42. Trajkovic K, Hsu C, Chiantia S et al (2008) Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319:1244–1247. https://doi.org/10.1126/science.1153124

    Article  CAS  PubMed  Google Scholar 

  43. Kosaka N, Iguchi H, Yoshioka Y et al (2010) Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem 285:17442–17452. https://doi.org/10.1074/jbc.M110.107821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gulbins E, Kolesnick R (2003) Raft ceramide in molecular medicine. Oncogene 22:7070–7077. https://doi.org/10.1038/sj.onc.1207146

    Article  CAS  PubMed  Google Scholar 

  45. Goñi FM, Alonso A (2009) Effects of ceramide and other simple sphingolipids on membrane lateral structure. Biochim Biophys Acta 1788:169–177. https://doi.org/10.1016/j.bbamem.2008.09.002

    Article  CAS  PubMed  Google Scholar 

  46. Holopainen JM, Subramanian M, Kinnunen PKJ (1998) Sphingomyelinase induces lipid microdomain formation in a fluid phosphatidylcholine/sphingomyelin membrane. Biochemistry 37:17562–17570. https://doi.org/10.1021/bi980915e

    Article  CAS  PubMed  Google Scholar 

  47. Hurwitz SN, Conlon MM, Rider MA et al (2016) Nanoparticle analysis sheds budding insights into genetic drivers of extracellular vesicle biogenesis. J Extracell Vesicles 5:31295. https://doi.org/10.3402/jev.v5.31295

    Article  CAS  PubMed  Google Scholar 

  48. Verweij FJ, Van Eijndhoven MAJ, Hopmans ES et al (2011) LMP1 association with CD63 in endosomes and secretion via exosomes limits constitutive NF-κB activation. EMBO J 30:2115–2129. https://doi.org/10.1038/emboj.2011.123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hurwitz SN, Nkosi D, Conlon MM et al (2017) CD63 regulates Epstein-Barr virus LMP1 exosomal packaging, enhancement of vesicle production, and noncanonical NF-κB signaling. J Virol 91:1–19. https://doi.org/10.1128/JVI.02251-16

    Article  Google Scholar 

  50. Chairoungdua A, Smith DL, Pochard P et al (2010) Exosome release of β-catenin: a novel mechanism that antagonizes Wnt signaling. J Cell Biol 190:1079–1091. https://doi.org/10.1083/jcb.201002049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Langemeyer L, Fröhlich F, Ungermann C (2018) Rab GTPase function in endosome and lysosome biogenesis. Trends Cell Biol 28:957–970. https://doi.org/10.1016/j.tcb.2018.06.007

    Article  CAS  PubMed  Google Scholar 

  52. Blanc L, Vidal M (2018) New insights into the function of Rab GTPases in the context of exosomal secretion. Small GTPases 9:95–106. https://doi.org/10.1080/21541248.2016.1264352

    Article  CAS  PubMed  Google Scholar 

  53. Hsu C, Morohashi Y, Yoshimura SI et al (2010) Regulation of exosome secretion by Rab35 and its GTPase-activating proteins TBC1D10A-C. J Cell Biol 189:223–232. https://doi.org/10.1083/jcb.200911018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Savina A, Fader CM, Damiani MT, Colombo MI (2005) Rab11 promotes docking and fusion of multivesicular bodies in a calcium-dependent manner. Traffic 6:131–143. https://doi.org/10.1111/j.1600-0854.2004.00257.x

    Article  CAS  PubMed  Google Scholar 

  55. Ostrowski M, Carmo NB, Krumeich S et al (2010) Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol 12:19–30. https://doi.org/10.1038/ncb2000

    Article  CAS  PubMed  Google Scholar 

  56. Zhang F, Li R, Yang Y et al (2019) Specific decrease in B-cell-derived extracellular vesicles enhances post-chemotherapeutic CD8+ T cell responses. Immunity 50:738–750.e7. https://doi.org/10.1016/j.immuni.2019.01.010

    Article  CAS  PubMed  Google Scholar 

  57. Peinado H, Alečković M, Lavotshkin S et al (2012) Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 18:883–891. https://doi.org/10.1038/nm.2753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hoshino D, Kirkbride KC, Costello K et al (2013) Exosome secretion is enhanced by invadopodia and drives invasive behavior. Cell Rep 5:1159–1168. https://doi.org/10.1016/j.celrep.2013.10.050

    Article  CAS  PubMed  Google Scholar 

  59. Edgar JR, Manna PT, Nishimura S et al (2016) Tetherin is an exosomal tether. Elife 5:1–19. https://doi.org/10.7554/eLife.17180

    Article  Google Scholar 

  60. Villarroya-Beltri C, Baixauli F, Mittelbrunn M et al (2016) ISGylation controls exosome secretion by promoting lysosomal degradation of MVB proteins. Nat Commun 7. https://doi.org/10.1038/ncomms13588

  61. Latifkar A, Ling L, Hingorani A et al (2019) Loss of sirtuin 1 alters the secretome of breast cancer cells by impairing lysosomal integrity. Dev Cell 49:393–408.e7. https://doi.org/10.1016/j.devcel.2019.03.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Husnjak K, Dikic I (2012) Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions. Annu Rev Biochem 81:291–322. https://doi.org/10.1146/annurev-biochem-051810-094654

    Article  CAS  PubMed  Google Scholar 

  63. Albert M, Bécares M, Falqui M et al (2018) ISG15, a small molecule with huge implications: regulation of mitochondrial homeostasis. Viruses 10:629. https://doi.org/10.3390/v10110629

    Article  CAS  PubMed Central  Google Scholar 

  64. Kreger BT, Johansen ER, Cerione RA, Antonyak MA (2016) The enrichment of survivin in exosomes from breast cancer cells treated with paclitaxel promotes cell survival and chemoresistance. Cancers (Basel) 8. https://doi.org/10.3390/cancers8120111

  65. Crow J, Atay S, Banskota S et al (2017) Exosomes as mediators of platinum resistance in ovarian cancer. Oncotarget 8:11917–11936. https://doi.org/10.18632/oncotarget.14440

    Article  PubMed  PubMed Central  Google Scholar 

  66. Marupudi NI, Han JE, Li KW et al (2007) Paclitaxel: a review of adverse toxicities and novel delivery strategies. Expert Opin Drug Saf 6:609–621. https://doi.org/10.1517/14740338.6.5.609

    Article  CAS  PubMed  Google Scholar 

  67. Folkman J, Long DM, Becker FF (1963) Growth and metastasis of tumor in organ culture. Cancer 16:453–467. https://doi.org/10.1002/1097-0142(196304)16:4<453::AID-CNCR2820160407>3.0.CO;2-Y

    Article  CAS  PubMed  Google Scholar 

  68. Simons M, Gordon E, Claesson-Welsh L (2016) Mechanisms and regulation of endothelial VEGF receptor signalling. Nat Rev Mol Cell Biol 17:611–625. https://doi.org/10.1038/nrm.2016.87

    Article  CAS  PubMed  Google Scholar 

  69. Al-Nedawi K, Meehan B, Kerbel RS et al (2009) Endothelial expression of autocrine VEGF upon the uptake of tumor-derived microvesicles containing oncogenic EGFR. Proc Natl Acad Sci 106:3794–3799. https://doi.org/10.1073/pnas.0804543106

    Article  PubMed  PubMed Central  Google Scholar 

  70. Feng Q, Zhang C, Lum D et al (2017) A class of extracellular vesicles from breast cancer cells activates VEGF receptors and tumour angiogenesis. Nat Commun 8:14450. https://doi.org/10.1038/ncomms14450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Obenauf AC, Massagué J (2015) Surviving at a distance: organ-specific metastasis. Trends Cancer 1:76–91. https://doi.org/10.1016/j.trecan.2015.07.009

    Article  PubMed  PubMed Central  Google Scholar 

  72. Gupta GP, Massagué J (2006) Cancer metastasis: building a framework. Cell 127:679–695. https://doi.org/10.1016/j.cell.2006.11.001

    Article  CAS  PubMed  Google Scholar 

  73. Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition find the latest version: review series the basics of epithelial-mesenchymal transition. J Clin Invest 119:1420–1428. https://doi.org/10.1172/JCI39104.1420

  74. Christianson HC, Svensson KJ, van Kuppevelt TH et al (2013) Cancer cell exosomes depend on cell-surface heparan sulfate proteoglycans for their internalization and functional activity. Proc Natl Acad Sci 110:17380–17385. https://doi.org/10.1073/pnas.1304266110

    Article  PubMed  PubMed Central  Google Scholar 

  75. Franzen CA, Blackwell RH, Todorovic V et al (2015) Urothelial cells undergo epithelial-to-mesenchymal transition after exposure to muscle invasive bladder cancer exosomes. Oncogenesis 4:e163–e110. https://doi.org/10.1038/oncsis.2015.21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Tauro BJ, Mathias RA, Greening DW et al (2013) Oncogenic H-Ras reprograms Madin-Darby Canine kidney (MDCK) cell-derived exosomal proteins following epithelial-mesenchymal transition. Mol Cell Proteomics 12:2148–2159. https://doi.org/10.1074/mcp.M112.027086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Shimoda M, Khokha R (2013) Proteolytic factors in exosomes. Proteomics 13:1624–1636. https://doi.org/10.1002/pmic.201200458

    Article  CAS  PubMed  Google Scholar 

  78. Sidhu SS, Mengistab AT, Tauscher AN et al (2004) The microvesicle as a vehicle for EMMPRIN in tumor–stromal interactions. Oncogene 23:956–963. https://doi.org/10.1038/sj.onc.1207070

    Article  CAS  PubMed  Google Scholar 

  79. Bobrie A, Krumeich S, Reyal F et al (2012) Rab27a supports exosome-dependent and -independent mechanisms that modify the tumor microenvironment and can promote tumor progression. Cancer Res 72:4920–4930. https://doi.org/10.1158/0008-5472.CAN-12-0925

    Article  CAS  PubMed  Google Scholar 

  80. Hakulinen J, Sankkila L, Sugiyama N et al (2008) Secretion of active membrane type 1 matrix metalloproteinase (MMP-14) into extracellular space in microvesicular exosomes. J Cell Biochem 105:1211–1218. https://doi.org/10.1002/jcb.21923

    Article  CAS  PubMed  Google Scholar 

  81. Hoshino A, Costa-Silva B, Shen T-L et al (2015) Tumour exosome integrins determine organotropic metastasis. Nature 527:329–335. https://doi.org/10.1038/nature15756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Paget S (1889) The distribution of secondary growths in cancer of the breast. Lancet 133:571–573. https://doi.org/10.1016/S0140-6736(00)49915-0

    Article  Google Scholar 

  83. Le MTN, Hamar P, Guo C et al (2014) miR-200–containing extracellular vesicles promote breast cancer cell metastasis. J Clin Invest 124:5109–5128. https://doi.org/10.1172/JCI75695

    Article  PubMed  PubMed Central  Google Scholar 

  84. Gravgaard KH, Lyng MB, Laenkholm AV et al (2012) The miRNA-200 family and miRNA-9 exhibit differential expression in primary versus corresponding metastatic tissue in breast cancer. Breast Cancer Res Treat 134:207–217. https://doi.org/10.1007/s10549-012-1969-9

    Article  CAS  PubMed  Google Scholar 

  85. Madhavan D, Zucknick M, Wallwiener M et al (2012) Circulating miRNAs as surrogate markers for circulating tumor cells and prognostic markers in metastatic breast cancer. Clin Cancer Res 18:5972–5982. https://doi.org/10.1158/1078-0432.CCR-12-1407

    Article  CAS  PubMed  Google Scholar 

  86. Dunn GP, Bruce AT, Ikeda H et al (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3:991–998. https://doi.org/10.1038/ni1102-991

    Article  CAS  PubMed  Google Scholar 

  87. Mittal D, Gubin MM, Schreiber RD, Smyth MJ (2014) New insights into cancer immunoediting and its three component phases-elimination, equilibrium and escape. Curr Opin Immunol 27:16–25. https://doi.org/10.1016/j.coi.2014.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Schreiber RD, Old LJ, Smyth MJ (2011) Cancer immunoediting: integrating the role of immunity in cancer suppression and promotion. Science 331:78

    Article  Google Scholar 

  89. Topalian SL, Drake CG, Pardoll DM (2015) Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 27:450–461. https://doi.org/10.1016/j.ccell.2015.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Alsaab HO, Sau S, Alzhrani R et al (2017) PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome. Front Pharmacol 8:1–15. https://doi.org/10.3389/fphar.2017.00561

    Article  CAS  Google Scholar 

  91. Chen Q, Li T, Yue W (2018) Drug response to PD-1/PD-L1 blockade: based on biomarkers. Onco Targets Ther 11:4673–4683. https://doi.org/10.2147/OTT.S168313

    Article  PubMed  PubMed Central  Google Scholar 

  92. Theodoraki M-N, Yerneni SS, Hoffmann TK et al (2018) Clinical significance of PD-L1 + exosomes in plasma of head and neck cancer patients. Clin Cancer Res 24:896–905. https://doi.org/10.1158/1078-0432.CCR-17-2664

    Article  CAS  PubMed  Google Scholar 

  93. van Calker D, Müller M, Hamprecht B (1979) Adenosine regulates via two different types of receptors, the accumulation of cyclic amp in cultured brain cells. J Neurochem 33:999–1005. https://doi.org/10.1111/j.1471-4159.1979.tb05236.x

    Article  PubMed  Google Scholar 

  94. Huang S, Apasov S, Koshiba M, Sitkovsky M (1997) Role of A2a extracellular adenosine receptor-mediated signaling in adenosine-mediated inhibition of T-cell activation and expansion. Blood 90:1600–1610

    Article  CAS  PubMed  Google Scholar 

  95. Vijayan D, Young A, Teng MWLL, Smyth MJ (2017) Targeting immunosuppressive adenosine in cancer. Nat Rev Cancer 17:709–724. https://doi.org/10.1038/nrc.2017.86

    Article  CAS  PubMed  Google Scholar 

  96. Allard B, Beavis PA, Darcy PK, Stagg J (2016) Immunosuppressive activities of adenosine in cancer. Curr Opin Pharmacol 29:7–16. https://doi.org/10.1016/j.coph.2016.04.001

    Article  CAS  PubMed  Google Scholar 

  97. Ohta A, Sitkovsky M (2001) Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature 414:916–920. https://doi.org/10.1038/414916a

    Article  CAS  PubMed  Google Scholar 

  98. Bastid J, Regairaz A, Bonnefoy N et al (2015) Inhibition of CD39 enzymatic function at the surface of tumor cells alleviates their immunosuppressive activity. Cancer Immunol Res 3:254–265. https://doi.org/10.1158/2326-6066.cir-14-0018

    Article  CAS  PubMed  Google Scholar 

  99. Turcotte M, Spring K, Pommey S et al (2015) CD73 is associated with poor prognosis in high-grade serous ovarian cancer. Cancer Res 75:4494–4503. https://doi.org/10.1158/0008-5472.CAN-14-3569

    Article  CAS  PubMed  Google Scholar 

  100. Ohta A, Gorelik E, Prasad SJ et al (2006) A2A adenosine receptor protects tumors from antitumor T cells. Proc Natl Acad Sci 103:13132–13137. https://doi.org/10.1073/pnas.0605251103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Clayton A, Al-Taei S, Webber J et al (2011) Cancer exosomes express CD39 and CD73, which suppress T cells through adenosine production. J Immunol 187:676–683. https://doi.org/10.4049/jimmunol.1003884

    Article  CAS  PubMed  Google Scholar 

  102. Akers JC, Ramakrishnan V, Kim R et al (2013) miR-21 in the extracellular vesicles (EVs) of cerebrospinal fluid (CSF): a platform for glioblastoma biomarker development. PLoS One 8:1–13. https://doi.org/10.1371/journal.pone.0078115

    Article  CAS  Google Scholar 

  103. Dejima H, Iinuma H, Kanaoka R et al (2017) Exosomal microRNA in plasma as a non-invasive biomarker for the recurrence of non-small cell lung cancer. Oncol Lett 13:1256–1263. https://doi.org/10.3892/ol.2017.5569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Allenson K, Castillo J, San Lucas FA et al (2017) High prevalence of mutant KRAS in circulating exosome-derived DNA from early-stage pancreatic cancer patients. Ann Oncol 28:741–747. https://doi.org/10.1093/annonc/mdx004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Keklikoglou I, Cianciaruso C, Güç E et al (2019) Chemotherapy elicits pro-metastatic extracellular vesicles in breast cancer models. Nat Cell Biol 21:190–202. https://doi.org/10.1038/s41556-018-0256-3

    Article  CAS  PubMed  Google Scholar 

  106. Kamerkar S, Lebleu VS, Sugimoto H et al (2017) Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature 546:498–503. https://doi.org/10.1038/nature22341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Yang T, Martin P, Fogarty B et al (2015) Exosome delivered anticancer drugs across the blood-brain barrier for brain cancer therapy in Danio Rerio. Pharm Res 32:2003–2014. https://doi.org/10.1007/s11095-014-1593-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Tibbitt MW, Dahlman JE, Langer R (2016) Emerging frontiers in drug delivery. J Am Chem Soc 138:704–717. https://doi.org/10.1021/jacs.5b09974

    Article  CAS  PubMed  Google Scholar 

  109. Johnsen KB, Gudbergsson JM, Skov MN et al (2014) A comprehensive overview of exosomes as drug delivery vehicles - endogenous nanocarriers for targeted cancer therapy. Biochim Biophys Acta Rev Cancer 1846:75–87. https://doi.org/10.1016/j.bbcan.2014.04.005

    Article  CAS  Google Scholar 

  110. Warsame R, Grothey A (2012) Treatment options for advanced pancreatic cancer: a review. Expert Rev Anticancer Ther 12:1327–1336. https://doi.org/10.1586/era.12.115

    Article  CAS  PubMed  Google Scholar 

  111. Lanfredini S, Thapa A, O’Neill E (2019) RAS in pancreatic cancer. Biochem Soc Trans 47:961–972. https://doi.org/10.1042/BST20170521

    Article  CAS  PubMed  Google Scholar 

  112. Stephen AG, Esposito D, Bagni RG, McCormick F (2014) Dragging ras back in the ring. Cancer Cell 25:272–281. https://doi.org/10.1016/j.ccr.2014.02.017

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A. Cerione .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chang, WH., Cerione, R.A., Antonyak, M.A. (2021). Extracellular Vesicles and Their Roles in Cancer Progression. In: Robles-Flores, M. (eds) Cancer Cell Signaling. Methods in Molecular Biology, vol 2174. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0759-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0759-6_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0758-9

  • Online ISBN: 978-1-0716-0759-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics