Skip to main content

Tagging and Deleting of Endogenous Caveolar Components Using CRISPR/Cas9 Technology

  • Protocol
  • First Online:
Caveolae

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2169))

Abstract

Here, we describe how to utilize CRISPR/Cas9 technology in the generation of tissue culture cells with fluorescently tagged caveolar components as well as cells deleted of endogenous caveolar components. As one example, we will describe tagging of EHD2, caveolar neck protein, with Green Fluorescent protein (eGFP) from endogenous loci (knock-in, KI). As another example, we will describe deletion (knock-out, KO) of Caveolin1 (Cav1), an essential caveolar component in NIH/3T3 cells. In both instances, the modifications were achieved by using Cas9 delivery on plasmid DNA by electroporation and by utilizing FACS cell sorting for selection or enrichment of edited population of cells. We also provide a list with tested gRNA sequences to successfully produce KI and KO of other caveolar components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Doyon JB, Zeitler B, Cheng J, Cheng AT, Cherone JM, Santiago Y, Lee AH, Vo TD, Doyon Y, Miller JC, Paschon DE, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Drubin DG (2011) Rapid and efficient clathrin-mediated endocytosis revealed in genome-edited mammalian cells. Nat Cell Biol 13:331–337

    Article  CAS  Google Scholar 

  2. Shvets E, Bitsikas V, Howard G, Hansen CG, Nichols BJ (2015) Dynamic caveolae exclude bulk membrane proteins and are required for sorting of excess glycosphingolipids. Nat Commun 6:6867

    Article  CAS  Google Scholar 

  3. Hayer A, Stoeber M, Ritz D, Engel S, Meyer HH, Helenius A (2010) Caveolin-1 is ubiquitinated and targeted to intralumenal vesicles in endolysosomes for degradation. J Cell Biol 191:615–629

    Article  CAS  Google Scholar 

  4. Parton RG, Howes MT (2010) Revisiting caveolin trafficking: the end of the caveosome. J Cell Biol 191:439–441

    Article  CAS  Google Scholar 

  5. Yeow I, Howard G, Chadwick J, Mendoza-Topaz C, Hansen CG, Nichols BJ, Shvets E (2017) EHD proteins cooperate to generate caveolar clusters and to maintain caveolae during repeated mechanical stress. Curr Biol 27:2951–2962

    Article  CAS  Google Scholar 

  6. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8:2281–2308

    Article  CAS  Google Scholar 

  7. Cost GJ, Cozzarelli (2007) Directed assembly of DNA molecules via simultaneous ligation and digestion. Biotechniques 42:84, 86–89

    Article  CAS  Google Scholar 

  8. Mendoza-Topaz C, Nelson G, Howard G, Hafner S, Rademacher P, Frick M, Nichols BJ (2018) Cells respond to deletion of CAV1 by increasing synthesis of extracellular matrix. PLoS One 13:e0205306

    Article  CAS  Google Scholar 

  9. Zhang JP, Li XL, Li GH, Chen W, Arakaki C, Botimer GD, Baylink D, Zhang L, Wen W, Fu YW, Xu J, Chun N, Yuan W, Cheng T, Zhang XB (2017) Efficient precise knockin with a double cut HDR donor after CRISPR/Cas9-mediated double-stranded DNA cleavage. Genome Biol 18:35

    Article  Google Scholar 

  10. de Kreuk BJ, Nethe M, Fernandez-Borja M, Anthony EC, Hensbergen PJ, Deelder AM, Plomann M, Hordijk PL (2011) The F-BAR domain protein PACSIN2 associates with Rac1 and regulates cell spreading and migration. J Cell Sci 124:2375–2388

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Shvets .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Shvets, E., Mendoza-Topaz, C. (2020). Tagging and Deleting of Endogenous Caveolar Components Using CRISPR/Cas9 Technology. In: Blouin, C. (eds) Caveolae. Methods in Molecular Biology, vol 2169. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0732-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0732-9_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0731-2

  • Online ISBN: 978-1-0716-0732-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics