Skip to main content

PELDOR/DEER: An Electron Paramagnetic Resonance Method to Study Membrane Proteins in Lipid Bilayers

  • Protocol
  • First Online:
Biophysics of Membrane Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2168))

Abstract

Every membrane protein is involved in close interactions with the lipid environment of cellular membranes. The annular lipids, that are in direct contact with the polypeptide, can in principle be seen as an integral part of its structure, akin to the first hydration shell of soluble proteins. It is therefore desirable to investigate the structure of membrane proteins and especially their conformational flexibility under conditions that are as close as possible to their native state. This can be achieved by reconstituting the protein into proteoliposomes, nanodiscs, or bicelles. In recent years, PELDOR/DEER spectroscopy has proved to be a very useful method to study the structure and function of membrane proteins in such artificial membrane environments. The technique complements both X-ray crystallography and cryo-EM and can be used in combination with virtually any artificial membrane environment and under certain circumstances even in native membranes. Of the above-mentioned membrane mimics, bicelles are currently the least often used for PELDOR studies, although they offer some advantages, especially their ease of use. Here, we provide a step-by-step protocol for studying a bicelle reconstituted membrane protein with PELDOR/DEER spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A et al (2015) Tissue-based map of the human proteome. Science 347:1260419

    Google Scholar 

  2. Deisenhofer J, Epp O, Miki K, Huber R, Michel H (1985) Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3Å resolution. Nature 318:618–624

    Article  CAS  PubMed  Google Scholar 

  3. Carpenter EP, Beis K, Cameron AD, Iwata S (2008) Overcoming the challenges of membrane protein crystallography. Curr Opin Struct Biol 18:581–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kühlbrandt W (2014) Cryo-EM enters a new era. Elife 3:e03678

    Article  PubMed  PubMed Central  Google Scholar 

  5. Shoemaker SC, Ando N (2018) X-rays in the cryo-electron microscopy era: structural biology’s dynamic future. Biochemistry 57:277–285

    Article  CAS  PubMed  Google Scholar 

  6. Jeschke G (2018) The contribution of modern EPR to structural biology. Emerging Top Life Sci

    Google Scholar 

  7. Milov A, Salikohov K, Shirov M (1981) Application of endor in electron-spin echo for paramagnetic center space distribution in solids. Fizika Tverdogo Tela 23:975–982

    CAS  Google Scholar 

  8. Jeschke G (2012) DEER distance measurements on proteins. Annu Rev Phys Chem 63:419–446

    Article  CAS  PubMed  Google Scholar 

  9. Berliner LJ, Grunwald J, Hankovszky HO, Hideg K (1982) A novel reversible thiol-specific spin label: papain active site labeling and inhibition. Anal Biochem 119:450–455

    Article  CAS  PubMed  Google Scholar 

  10. Klare JP, Steinhoff HJ (2009) Spin labeling EPR. Photosynth Res 102:377–390

    Article  CAS  PubMed  Google Scholar 

  11. Altenbach C, Marti T, Khorana HG, Hubbell WL (1990) Transmembrane protein structure: spin labeling of bacteriorhodopsin mutants. Science 248:1088–1092

    Article  CAS  PubMed  Google Scholar 

  12. Bangham AD, Horne RW (1964) Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. J Mol Biol 8:660–668

    Article  CAS  PubMed  Google Scholar 

  13. Sanders CR II, Landis GC (2002) Reconstitution of membrane proteins into lipid-rich bilayered mixed micelles for NMR studies. Biochemistry 34:4030–4040

    Article  Google Scholar 

  14. Sanders CR, Prosser RS (1998) Bicelles: a model membrane system for all seasons? Structure 6:1227–1234

    Article  CAS  PubMed  Google Scholar 

  15. Ujwal R, Bowie JU (2011) Crystallizing membrane proteins using lipidic bicelles. Methods 55:337–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Faham S, Bowie JU (2002) Bicelle crystallization: a new method for crystallizing membrane proteins yields a monomeric bacteriorhodopsin structure. J Mol Biol 316:1–6

    Article  CAS  PubMed  Google Scholar 

  17. Bayburt TH, Grinkova YV, Sligar SG (2002) Self-assembly of discoidal phospholipid bilayer nanoparticles with membrane scaffold proteins. Nano Lett 2:853–856

    Article  CAS  Google Scholar 

  18. Broecker J, Eger BT, Ernst OP (2017) Crystallogenesis of membrane proteins mediated by polymer-bounded lipid nanodiscs. Structure 25:384–392

    Article  CAS  PubMed  Google Scholar 

  19. Postis V, Rawson S, Mitchell JK, Lee SC, Parslow RA, Dafforn TR et al (2015) The use of SMALPs as a novel membrane protein scaffold for structure study by negative stain electron microscopy. Biochim Biophys Acta 1848:496–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lee SC, Knowles TJ, Postis VLG, Jamshad M, Parslow RA, Lin Y-P et al (2016) A method for detergent-free isolation of membrane proteins in their local lipid environment. Nat Protoc 11:1149–1162

    Article  CAS  PubMed  Google Scholar 

  21. Parmar M, Rawson S, Scarff CA, Goldman A, Dafforn TR, Muench SP et al (2018) Using a SMALP platform to determine a sub-nm single particle cryo-EM membrane protein structure. Biochim Biophys Acta 1860:378–383

    Article  CAS  PubMed Central  Google Scholar 

  22. Denisov IG, Grinkova YV, Lazarides AA, Sligar SG (2004) Directed self-assembly of monodisperse phospholipid bilayer nanodiscs with controlled size. J Am Chem Soc 126:3477–3487

    Article  CAS  PubMed  Google Scholar 

  23. Tribet C, Audebert R, Popot JL (1996) Amphipols: polymers that keep membrane proteins soluble in aqueous solutions. Proc Natl Acad Sci U S A 93:15047–15050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cherezov V, Clogston J, Misquitta Y, Abdel-Gawad W, Caffrey M (2002) Membrane protein crystallization in meso: lipid type-tailoring of the cubic phase. Biophys J 83:3393–3407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Caffrey M (2015) A comprehensive review of the lipid cubic phase or in meso method for crystallizing membrane and soluble proteins and complexes. Acta Crystallogr F Struct Biol Commun 71:3–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Joseph B, Sikora A, Bordignon E, Jeschke G, Cafiso DS, Prisner TF (2015) Distance measurement on an endogenous membrane transporter in E. coli cells and native membranes using EPR spectroscopy. Angew Chem Int Ed Engl 54:6196–6199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Igarashi R, Sakai T, Hara H, Tenno T, Tanaka T, Tochio H et al (2010) Distance determination in proteins inside Xenopus laevis oocytes by double electron-electron resonance experiments. J Am Chem Soc 132:8228–8229

    Article  CAS  PubMed  Google Scholar 

  28. Hilger D, Jung H, Padan E, Wegener C, Vogel K-P, Steinhoff HJ et al (2005) Assessing oligomerization of membrane proteins by four-pulse DEER: pH-dependent dimerization of NhaA Na+/H+ antiporter of E. coli. Biophys J 89:1328–1338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Joseph B, Korkhov VM, Yulikov M, Jeschke G, Bordignon E (2014) Conformational cycle of the vitamin B12 ABC importer in liposomes detected by double electron-electron resonance (DEER). J Biol Chem 289:3176–3185

    Article  CAS  PubMed  Google Scholar 

  30. Zou P, Bortolus M, Mchaourab HS (2009) Conformational cycle of the ABC transporter MsbA in liposomes: detailed analysis using double electron-electron resonance spectroscopy. J Mol Biol 393:586–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Endeward B, Butterwick JA, MacKinnon R, Prisner TF (2009) Pulsed electron−electron double-resonance determination of spin-label distances and orientations on the tetrameric potassium ion channel KcsA. J Am Chem Soc 131:15246–15250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dastvan R, Bode BE, Karuppiah MPR, Marko A, Lyubenova S, Schwalbe H et al (2010) Optimization of transversal relaxation of nitroxides for pulsed electron-electron double resonance spectroscopy in phospholipid membranes. J Phys Chem B 114:13507–13516

    Article  CAS  PubMed  Google Scholar 

  33. Zou P, Mchaourab HS (2010) Increased sensitivity and extended range of distance measurements in spin-labeled membrane proteins: Q-band double electron-electron resonance and nanoscale bilayers. Biophys J 98:L18–L20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ward R, Pliotas C, Branigan E, Hacker C, Rasmussen A, Hagelueken G et al (2014) Probing the structure of the mechanosensitive channel of small conductance in lipid bilayers with pulsed electron-electron double resonance. Biophys J 106:834–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sahu ID, McCarrick RM, Troxel KR, Zhang R, Smith HJ, Dunagan MM et al (2013) DEER EPR measurements for membrane protein structures via bifunctional spin labels and lipodisq nanoparticles. Biochemistry 52:6627–6632

    Article  CAS  PubMed  Google Scholar 

  36. Schredelseker J, Paz A, López CJ, Altenbach C, Leung CS, Drexler MK et al (2014) High resolution structure and double electron-electron resonance of the zebrafish voltage-dependent anion channel 2 reveal an oligomeric population. J Biol Chem 289:12566–12577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. McCaffrey JE, James ZM, Svensson B, Binder BP, Thomas DD (2016) A bifunctional spin label reports the structural topology of phospholamban in magnetically-aligned bicelles. J Magn Reson 262:50–56

    Article  CAS  PubMed  Google Scholar 

  38. McCaffrey JE, James ZM, Thomas DD (2015) Optimization of bicelle lipid composition and temperature for EPR spectroscopy of aligned membranes. J Magn Reson 250:71–75

    Article  CAS  PubMed  Google Scholar 

  39. Garber SM, Lorigan GA, Howard KP (1999) Magnetically oriented phospholipid bilayers for spin label EPR studies. J Am Chem Soc 121:3240–3241

    Article  CAS  Google Scholar 

  40. Dave PC, Nusair NA, Inbaraj JJ, Lorigan GA (2005) Electron paramagnetic resonance studies of magnetically aligned phospholipid bilayers utilizing a phospholipid spin label: the effect of cholesterol. Biochim Biophys Acta 1714:141–151

    Article  CAS  PubMed  Google Scholar 

  41. Kroncke BM, Van Horn WD, Smith J, Kang C, Welch RC, Song Y et al (2016) Structural basis for KCNE3 modulation of potassium recycling in epithelia. Sci Adv 2:e1501228

    Google Scholar 

  42. Bountra K, Hagelueken G, Choudhury HG, Corradi V, El Omari K, Wagner A et al (2017) Structural basis for antibacterial peptide self-immunity by the bacterial ABC transporter McjD. EMBO J 36:3062–3079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hagelueken G, Hoffmann J, Schubert E, Duthie FG, Florin N, Konrad L et al (2016) Studies on the X-ray and solution structure of FeoB from Escherichia coli BL21. Biophys J 110:2642–2650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hagelueken G, Ward R, Naismith JH, Schiemann O (2012) MtsslWizard: in silico spin-labeling and generation of distance distributions in PyMOL. Appl Magn Reson 42:377–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jeschke G, Chechik V, Ionita P, Godt A (2006) DeerAnalysis2006—a comprehensive software package for analyzing pulsed ELDOR data. Appl Magn Reson 30:473–498

    Article  CAS  Google Scholar 

  46. Choudhury HG, Tong Z, Mathavan I, Li Y, Iwata S, Zirah S et al (2014) Structure of an antibacterial peptide ATP-binding cassette transporter in a novel outward occluded state. Proc Natl Acad Sci U S A 111:9145–9150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kaback HR (1974) Transport studies in bacterial membrane vesicles. Science 186:882–892

    Article  CAS  PubMed  Google Scholar 

  48. Jahromy YN, Schubert E (2014) Demystifying EPR: a Rookie guide to the application of electron paramagnetic resonance spectroscopy on biomolecules. Prog Biol Sci 4:133–152

    Google Scholar 

  49. Schiemann O, Piton N, Plackmeyer J, Bode BE, Prisner TF, Engels JW (2007) Spin labeling of oligonucleotides with the nitroxide TPA and use of PELDOR, a pulse EPR method, to measure intramolecular distances. Nat Protoc 2:904–923

    Article  CAS  PubMed  Google Scholar 

  50. Pannier M, Veit S, Godt A, Jeschke G, Spiess HW (2000) Dead-time free measurement of dipole-dipole interactions between electron spins. J Magn Reson 142:331–340

    Article  CAS  PubMed  Google Scholar 

  51. Schmidt T, Wälti MA, Baber JL, Hustedt EJ, Clore GM (2016) Long distance measurements up to 160 Å in the GroEL tetradecamer using Q-band DEER EPR spectroscopy. Angew Chem Int Ed Engl 55:15905–15909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. El Mkami H, Norman DG (2015) EPR distance measurements in deuterated proteins. In: Electron paramagnetic resonance investigations of biological systems by using spin labels, spin probes, and intrinsic metal ions, part B. Elsevier, Amsterdam, pp 125–152

    Chapter  Google Scholar 

  53. Hagelueken G, Abdullin D, Schiemann O (2015) mtsslSuite: probing biomolecular conformation by spin-labeling studies. Methods Enzymol 563:595–622

    Article  CAS  PubMed  Google Scholar 

  54. Hatmal MM, Li Y, Hegde BG, Hegde PB, Jao CC, Langen R et al (2011) Computer modeling of nitroxide spin labels on proteins. Biopolymers 97:35–44

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Jeschke G (2017) MMM: a toolbox for integrative structure modeling. Protein Sci 181:223

    Google Scholar 

  56. Luecke H, Schobert B, Richter HT, Cartailler JP, Lanyi JK (1999) Structure of bacteriorhodopsin at 1.55 A resolution. J Mol Biol 291:899–911

    Article  CAS  PubMed  Google Scholar 

  57. Orwick-Rydmark M, Lovett JE, Graziadei A, Lindholm L, Hicks MR, Watts A (2012) Detergent-free incorporation of a seven-transmembrane receptor protein into nanosized bilayer lipodisq particles for functional and biophysical studies. Nano Lett 12:4687–4692

    Article  CAS  PubMed  Google Scholar 

  58. Zhou Y, Morais-Cabral JH, Kaufman A, MacKinnon R (2001) Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 A resolution. Nature 414:43–48

    Article  CAS  PubMed  Google Scholar 

  59. Bass RB, Strop P, Barclay M, Rees DC (2002) Crystal structure of Escherichia coli MscS, a voltage-modulated and mechanosensitive channel. Science 298:1582–1587

    Article  CAS  PubMed  Google Scholar 

  60. Pliotas C, Ward R, Branigan E, Rasmussen A, Hagelueken G, Huang H et al (2012) Conformational state of the MscS mechanosensitive channel in solution revealed by pulsed electron-electron double resonance (PELDOR) spectroscopy. Proc Natl Acad Sci U S A 109:E2675–E2682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sonnhammer EL, Von Heijne G, Krogh A (1998) A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Int Conf Intell Syst Mol Biol 6:175–182

    CAS  PubMed  Google Scholar 

  62. Krogh A, Larsson B, von Heijne G, Sonnhammer ELL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580

    Article  CAS  PubMed  Google Scholar 

  63. Glaenzer J, Peter MF, Hagelueken G (2018) Studying structure and function of membrane proteins with PELDOR/DEER spectroscopy – a crystallographers’ perspective. Methods 147:163–175

    Article  CAS  PubMed  Google Scholar 

  64. Kucher S, Korneev S, Tyagi S, Apfelbaum R, Grohmann D, Lemke EA et al (2016) Orthogonal spin labeling using click chemistry for in vitro and in vivo applications. J Magn Reson 275:38–45

    Article  PubMed  CAS  Google Scholar 

  65. Fleissner MR, Brustad EM, Kálái T, Altenbach C, Cascio D, Peters FB et al (2009) Site-directed spin labeling of a genetically encoded unnatural amino acid. Proc Natl Acad Sci U S A 106:21637–21642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Haugland MM, Anderson EA, Lovett JE (2016) Tuning the properties of nitroxide spin labels for use in electron paramagnetic resonance spectroscopy through chemical modification of the nitroxide framework. In: Electron paramagnetic resonance. Royal Society of Chemistry, Cambridge, pp 1–34

    Google Scholar 

  67. Potapov A, Yagi H, Huber T, Jergic S, Dixon NE, Otting G et al (2010) Nanometer-scale distance measurements in proteins using Gd3+ spin labeling. J Am Chem Soc 132:9040–9048

    Article  CAS  PubMed  Google Scholar 

  68. Krumkacheva O, Bagryanskaya E (2017) EPR-based distance measurements at ambient temperature. J Magn Reson 280:117–126

    Article  CAS  PubMed  Google Scholar 

  69. Mchaourab HS, Steed PR, Kazmier K (2011) Toward the fourth dimension of membrane protein structure: insight into dynamics from spin-labeling EPR spectroscopy. Structure 19:1549–1561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Xu Q, Ellena JF, Kim M, Cafiso DS (2006) Substrate-dependent unfolding of the energy coupling motif of a membrane transport protein determined by double electron-electron resonance. Biochemistry 45:10847–10854

    Article  CAS  PubMed  Google Scholar 

  71. Vera L, Stura EA (2014) Strategies for protein cryocrystallography. Cryst Growth Des 14:427–435

    Article  CAS  Google Scholar 

  72. Florin N, Schiemann O, Hagelueken G (2014) High-resolution crystal structure of spin labelled (T21R1) azurin from Pseudomonas aeruginosa: a challenging structural benchmark for in silico spin labelling algorithms. BMC Struct Biol 14:16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Jeschke G (2013) Conformational dynamics and distribution of nitroxide spin labels. Prog Nucl Magn Reson Spectrosc 72:42–60

    Article  CAS  PubMed  Google Scholar 

  74. Alexander NS, Stein RA, Koteiche HA, Kaufmann KW, Mchaourab HS, Meiler J (2013) RosettaEPR: rotamer library for spin label structure and dynamics. PLoS One 8:e72851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lillington JED, Lovett JE, Johnson S, Roversi P, Timmel CR, Lea SM (2011) Shigella flexneri Spa15 crystal structure verified in solution by double electron electron resonance. J Mol Biol 405:427–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank our colleague Nicole Florin for technical assistance. Ki.B. is supported by a Biotechnology and Biological Sciences Research Council (BBSRC) Doctoral Training Partnership (DTP). This work was supported by the Medical Research Council (MR/N020103/1 to K.B.). M.F. Peter is supported by a fellowship of the Konrad-Adenauer-Stiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregor Hagelueken .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Peter, M.F., Bountra, K., Beis, K., Hagelueken, G. (2020). PELDOR/DEER: An Electron Paramagnetic Resonance Method to Study Membrane Proteins in Lipid Bilayers. In: Postis, V.L.G., Goldman, A. (eds) Biophysics of Membrane Proteins. Methods in Molecular Biology, vol 2168. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0724-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0724-4_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0723-7

  • Online ISBN: 978-1-0716-0724-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics