Skip to main content

Targeting Polyadenylation for Retention of RNA at Chromatin

  • Protocol
  • First Online:
RNA-Chromatin Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2161))

  • 1405 Accesses

Abstract

The various steps of RNA polymerase II transcription, including transcription initiation, splicing, and termination, are interlinked and tightly coordinated. Efficient 3′end processing is defined by sequence motifs emerging in the nascent-transcribed RNA strand and the cotranscriptional binding of regulatory proteins. The processing of a mature 3′end consists of cleavage and polyadenylation and is coupled with RNA polymerase II transcription termination and the dissociation of the nascent RNA transcript from the chromatin-associated transcriptional template. The subcellular and subnuclear topological specificity of the various RNA species is important for their functions. For instance, the formation of RNA-binding protein interactions, critical for the final outcome of gene expression, may require the nucleoplasmic fully spliced and polyadenylated form of an RNA transcript. Thus, interfering with the critical step of transcription termination and 3′end formation provides a means for assaying the functional potential of a given RNA of interest.

In this protocol, we describe a method for blocking 3′end processing of the nascent RNA transcript, by using RNase H-inactive antisense oligonucleotides targeting cleavage and polyadenylation, delivered via transient transfection in cell culture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Proudfoot NJ (2016) Transcriptional termination in mammals: stopping the RNA polymerase II juggernaut. Science 352(6291):aad9926. https://doi.org/10.1126/science.aad9926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kuehner JN, Pearson EL, Moore C (2011) Unravelling the means to an end: RNA polymerase II transcription termination. Nat Rev Mol Cell Biol 12(5):283–294. https://doi.org/10.1038/nrm3098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Proudfoot NJ (2011) Ending the message: poly(A) signals then and now. Genes Dev 25(17):1770–1782. https://doi.org/10.1101/gad.17268411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Carlevaro-Fita J, Johnson R (2019) Global positioning system: understanding long noncoding RNAs through subcellular localization. Mol Cell 73(5):869–883. https://doi.org/10.1016/j.molcel.2019.02.008

    Article  CAS  PubMed  Google Scholar 

  5. Ntini E, Louloupi A, Liz J, Muino JM, Marsico A, Orom UAV (2018) Long ncRNA A-ROD activates its target gene DKK1 at its release from chromatin. Nat Commun 9(1):1636. https://doi.org/10.1038/s41467-018-04100-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823. https://doi.org/10.1126/science.1231143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339(6121):823–826. https://doi.org/10.1126/science.1232033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mapendano CK, Lykke-Andersen S, Kjems J, Bertrand E, Jensen TH (2010) Crosstalk between mRNA 3′ end processing and transcription initiation. Mol Cell 40(3):410–422. https://doi.org/10.1016/j.molcel.2010.10.012

    Article  CAS  PubMed  Google Scholar 

  9. Andersen PK, Jensen TH, Lykke-Andersen S (2013) Making ends meet: coordination between RNA 3′-end processing and transcription initiation. Wiley Interdiscip Rev RNA 4(3):233–246. https://doi.org/10.1002/wrna.1156

    Article  CAS  PubMed  Google Scholar 

  10. Gong Q, Zhou Z (2017) Regulation of isoform expression by blocking Polyadenylation signal sequences with Morpholinos. Methods Mol Biol 1565:141–150. https://doi.org/10.1007/978-1-4939-6817-6_12

    Article  CAS  PubMed  Google Scholar 

  11. Heemskerk HA, de Winter CL, de Kimpe SJ, van Kuik-Romeijn P, Heuvelmans N, Platenburg GJ, van Ommen GJ, van Deutekom JC, Aartsma-Rus A (2009) In vivo comparison of 2’-O-methyl phosphorothioate and morpholino antisense oligonucleotides for Duchenne muscular dystrophy exon skipping. J Gene Med 11:257–66

    Google Scholar 

  12. Yang L, Niu H, Gao X, Wang Q, Han G, Cao L, Cai C, Weiler J, Yin H (2013) Effective exon skipping and dystrophin restoration by 2’-o-methoxyethyl antisense oligonucleotide in dystrophin-deficient mice. PLoS One 8:e61584

    Google Scholar 

  13. Pelechano V, Wilkening S, Jarvelin AI, Tekkedil MM, Steinmetz LM (2012) Genome-wide polyadenylation site mapping. Methods Enzymol 513:271–296. https://doi.org/10.1016/B978-0-12-391938-0.00012-4

    Article  CAS  PubMed  Google Scholar 

  14. Ntini E, Jarvelin AI, Bornholdt J, Chen Y, Boyd M, Jorgensen M, Andersson R, Hoof I, Schein A, Andersen PR, Andersen PK, Preker P, Valen E, Zhao X, Pelechano V, Steinmetz LM, Sandelin A, Jensen TH (2013) Polyadenylation site-induced decay of upstream transcripts enforces promoter directionality. Nat Struct Mol Biol 20(8):923–928. https://doi.org/10.1038/nsmb.2640

    Article  CAS  PubMed  Google Scholar 

  15. Conrad T, Orom UA (2017) Cellular fractionation and isolation of chromatin-associated RNA. Methods Mol Biol 1468:1–9. https://doi.org/10.1007/978-1-4939-4035-6_1

    Article  CAS  PubMed  Google Scholar 

  16. Salisbury J, Hutchison KW, Graber JH (2006) A multispecies comparison of the metazoan 3′-processing downstream elements and the CstF-64 RNA recognition motif. BMC Genomics 7:55. https://doi.org/10.1186/1471-2164-7-55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Martin G, Gruber AR, Keller W, Zavolan M (2012) Genome-wide analysis of pre-mRNA 3′ end processing reveals a decisive role of human cleavage factor I in the regulation of 3′ UTR length. Cell Rep 1(6):753–763. https://doi.org/10.1016/j.celrep.2012.05.003

    Article  CAS  PubMed  Google Scholar 

  18. Yao C, Biesinger J, Wan J, Weng L, Xing Y, Xie X, Shi Y (2012) Transcriptome-wide analyses of CstF64-RNA interactions in global regulation of mRNA alternative polyadenylation. Proc Natl Acad Sci U S A 109(46):18773–18778. https://doi.org/10.1073/pnas.1211101109

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gardini A (2017) Global run-on sequencing (GRO-Seq). Methods Mol Biol 1468:111–120. https://doi.org/10.1007/978-1-4939-4035-6_9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Louloupi A, Orom UAV (2018) Metabolic pulse-chase RNA Labeling for pri-miRNA processing dynamics. Methods Mol Biol 1823:33–41. https://doi.org/10.1007/978-1-4939-8624-8_3

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by an Alexander-von-Humboldt postdoctoral research fellowship to EN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgenia Ntini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ntini, E., Vang Ørom, U.A. (2020). Targeting Polyadenylation for Retention of RNA at Chromatin. In: Ørom, U. (eds) RNA-Chromatin Interactions. Methods in Molecular Biology, vol 2161. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0680-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0680-3_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0679-7

  • Online ISBN: 978-1-0716-0680-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics