Skip to main content

Improved Isolation of Human Vascular Wall–Resident Mesenchymal Stem Cells

  • Protocol
  • First Online:
Book cover Stem Cells and Tissue Repair

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2155))

Abstract

Niches for tissue-resident mesenchymal stem cells (MSCs) have been identified in many adult tissues. In particular, MSCs residing in the vascular stem cell niche came into focus: the so-called vascular wall–resident MSCs (VW-MSCs) were, based upon their anatomic location, (1) distributed throughout the adult organism, and (2) supposed to be the first line cells which could be addressed in response to a pathologic trigger acting on or in close vicinity to the vascular system. Like tissue-resident MSCs in general, VW-MSC contribute to organ integrity and harbor the capacity to suppress inflammation and promote repair during normal vessel homeostasis, although resident MSCs present in the healthy situation of an individual seems not to bear sufficient for protection or repair following injury. In contrast, injury affected MSCs could contribute to disease induction and progression. A detailed understanding of the molecular repertoire as well as of the signaling pathways controlling stem cell fate of VW-MSCs is prerequisite to understand how (1) endogenous VW-MSCs contribute to normal vessel homeostasis as well as diseases that include the vascular system, (2) a potential on-site manipulation of these cells directly within their endogenous niche could be used for therapeutically benefits, and (3) isolated and therapeutically applied VW-MSCs in terms of exogenous MSCs with superior repair capabilities might be logically more efficient to address vascular diseases than MSCs derived from other tissues. This chapter describes a straightforward protocol for the improved isolation of human VW-MSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Le Blanc K, Davies LC (2018) MSCs-cells with many sides. Cytotherapy 20(3):273–278. https://doi.org/10.1016/j.jcyt.2018.01.009

    Article  PubMed  Google Scholar 

  2. Le Blanc K, Frassoni F, Ball L, Locatelli F, Roelofs H, Lewis I, Lanino E, Sundberg B, Bernardo ME, Remberger M, Dini G, Egeler RM, Bacigalupo A, Fibbe W, Ringden O, Developmental Committee of the European Group for B, Marrow T (2008) Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 371(9624):1579–1586. https://doi.org/10.1016/S0140-6736(08)60690-X

    Article  CAS  PubMed  Google Scholar 

  3. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317. https://doi.org/10.1080/14653240600855905

    Article  CAS  PubMed  Google Scholar 

  4. Fernandez Vallone VB, Romaniuk MA, Choi H, Labovsky V, Otaegui J, Chasseing NA (2013) Mesenchymal stem cells and their use in therapy: what has been achieved? Differentiation 85(1–2):1–10. https://doi.org/10.1016/j.diff.2012.08.004

    Article  CAS  PubMed  Google Scholar 

  5. Wang S, Qu X, Zhao RC (2012) Clinical applications of mesenchymal stem cells. J Hematol Oncol 5:19. https://doi.org/10.1186/1756-8722-5-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mariani E, Facchini A (2012) Clinical applications and biosafety of human adult mesenchymal stem cells. Curr Pharm Des 18(13):1821–1845

    Article  CAS  Google Scholar 

  7. Otto WR, Wright NA (2011) Mesenchymal stem cells: from experiment to clinic. Fibrogenesis Tissue Repair 4:20. https://doi.org/10.1186/1755-1536-4-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sharma RR, Pollock K, Hubel A, McKenna D (2014) Mesenchymal stem or stromal cells: a review of clinical applications and manufacturing practices. Transfusion 54(5):1418–1437. https://doi.org/10.1111/trf.12421

    Article  CAS  PubMed  Google Scholar 

  9. Brown C, McKee C, Bakshi S, Walker K, Hakman E, Halassy S, Svinarich D, Dodds R, Govind CK, Chaudhry GR (2019) Mesenchymal stem cells: cell therapy and regeneration potential. J Tissue Eng Regen Med 13(9):1738–1755. https://doi.org/10.1002/term.2914

    Article  CAS  PubMed  Google Scholar 

  10. Naji A, Eitoku M, Favier B, Deschaseaux F, Rouas-Freiss N, Suganuma N (2019) Biological functions of mesenchymal stem cells and clinical implications. Cell Mol Life Sci 76(17):3323–3348. https://doi.org/10.1007/s00018-019-03125-1

    Article  CAS  PubMed  Google Scholar 

  11. Andrzejewska A, Lukomska B, Janowski M (2019) Concise review: mesenchymal stem cells: from roots to boost. Stem Cells 37(7):855–864. https://doi.org/10.1002/stem.3016

    Article  PubMed  Google Scholar 

  12. Conese M, Carbone A, Castellani S, Di Gioia S (2013) Paracrine effects and heterogeneity of marrow-derived stem/progenitor cells: relevance for the treatment of respiratory diseases. Cells Tissues Organs 197(6):445–473. https://doi.org/10.1159/000348831

    Article  CAS  PubMed  Google Scholar 

  13. De Becker A, Riet IV (2016) Homing and migration of mesenchymal stromal cells: how to improve the efficacy of cell therapy? World J Stem Cells 8(3):73–87. https://doi.org/10.4252/wjsc.v8.i3.73

    Article  PubMed  PubMed Central  Google Scholar 

  14. Leibacher J, Henschler R (2016) Biodistribution, migration and homing of systemically applied mesenchymal stem/stromal cells. Stem Cell Res Ther 7:7. https://doi.org/10.1186/s13287-015-0271-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jin HJ, Bae YK, Kim M, Kwon SJ, Jeon HB, Choi SJ, Kim SW, Yang YS, Oh W, Chang JW (2013) Comparative analysis of human mesenchymal stem cells from bone marrow, adipose tissue, and umbilical cord blood as sources of cell therapy. Int J Mol Sci 14(9):17986–18001. https://doi.org/10.3390/ijms140917986

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kern S, Eichler H, Stoeve J, Kluter H, Bieback K (2006) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24(5):1294–1301. https://doi.org/10.1634/stemcells.2005-0342

    Article  CAS  PubMed  Google Scholar 

  17. Zhu Y, Yang Y, Zhang Y, Hao G, Liu T, Wang L, Yang T, Wang Q, Zhang G, Wei J, Li Y (2014) Placental mesenchymal stem cells of fetal and maternal origins demonstrate different therapeutic potentials. Stem Cell Res Ther 5(2):48. https://doi.org/10.1186/scrt436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gotherstrom C, West A, Liden J, Uzunel M, Lahesmaa R, Le Blanc K (2005) Difference in gene expression between human fetal liver and adult bone marrow mesenchymal stem cells. Haematologica 90(8):1017–1026

    CAS  PubMed  Google Scholar 

  19. Ergun S, Tilki D, Klein D (2011) Vascular wall as a reservoir for different types of stem and progenitor cells. Antioxid Redox Signal 15(4):981–995. https://doi.org/10.1089/ars.2010.3507

    Article  CAS  PubMed  Google Scholar 

  20. Klein D, Weisshardt P, Kleff V, Jastrow H, Jakob HG, Ergun S (2011) Vascular wall-resident CD44+ multipotent stem cells give rise to pericytes and smooth muscle cells and contribute to new vessel maturation. PLoS One 6(5):e20540. https://doi.org/10.1371/journal.pone.0020540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Klein D (2016) Vascular Wall-resident multipotent stem cells of Mesenchymal nature within the process of vascular remodeling: cellular basis, clinical relevance, and implications for stem cell therapy. Stem Cells Int 2016:1905846. https://doi.org/10.1155/2016/1905846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Klein D, Hohn HP, Kleff V, Tilki D, Ergun S (2010) Vascular wall-resident stem cells. Histol Histopathol 25(5):681–689. https://doi.org/10.14670/HH-25.681

    Article  PubMed  Google Scholar 

  23. Worsdorfer P, Mekala SR, Bauer J, Edenhofer F, Kuerten S, Ergun S (2017) The vascular adventitia: an endogenous, omnipresent source of stem cells in the body. Pharmacol Ther 171:13–29. https://doi.org/10.1016/j.pharmthera.2016.07.017

    Article  CAS  PubMed  Google Scholar 

  24. Klein D, Schmetter A, Imsak R, Wirsdorfer F, Unger K, Jastrow H, Stuschke M, Jendrossek V (2016) Therapy with multipotent Mesenchymal stromal cells protects lungs from radiation-induced injury and reduces the risk of lung metastasis. Antioxid Redox Signal 24(2):53–69. https://doi.org/10.1089/ars.2014.6183

    Article  CAS  PubMed  Google Scholar 

  25. Klein D, Steens J, Wiesemann A, Schulz F, Kaschani F, Rock K, Yamaguchi M, Wirsdorfer F, Kaiser M, Fischer JW, Stuschke M, Jendrossek V (2017) Mesenchymal stem cell therapy protects lungs from radiation-induced endothelial cell loss by restoring superoxide dismutase 1 expression. Antioxid Redox Signal 26(11):563–582. https://doi.org/10.1089/ars.2016.6748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Steens J, Zuk M, Benchellal M, Bornemann L, Teichweyde N, Hess J, Unger K, Gorgens A, Klump H, Klein D (2017) In vitro generation of Vascular Wall-resident multipotent stem cells of Mesenchymal nature from murine induced pluripotent stem cells. Stem Cell Reports 8(4):919–932. https://doi.org/10.1016/j.stemcr.2017.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wegmeyer H, Broske AM, Leddin M, Kuentzer K, Nisslbeck AK, Hupfeld J, Wiechmann K, Kuhlen J, von Schwerin C, Stein C, Knothe S, Funk J, Huss R, Neubauer M (2013) Mesenchymal stromal cell characteristics vary depending on their origin. Stem Cells Dev 22(19):2606–2618. https://doi.org/10.1089/scd.2013.0016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Prasanna SJ, Gopalakrishnan D, Shankar SR, Vasandan AB (2010) Pro-inflammatory cytokines, IFNgamma and TNFalpha, influence immune properties of human bone marrow and Wharton jelly mesenchymal stem cells differentially. PLoS One 5(2):e9016. https://doi.org/10.1371/journal.pone.0009016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ribeiro A, Laranjeira P, Mendes S, Velada I, Leite C, Andrade P, Santos F, Henriques A, Graos M, Cardoso CM, Martinho A, Pais M, da Silva CL, Cabral J, Trindade H, Paiva A (2013) Mesenchymal stem cells from umbilical cord matrix, adipose tissue and bone marrow exhibit different capability to suppress peripheral blood B, natural killer and T cells. Stem Cell Res Ther 4(5):125. https://doi.org/10.1186/scrt336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang ZY, Teoh SH, Chong MS, Schantz JT, Fisk NM, Choolani MA, Chan J (2009) Superior osteogenic capacity for bone tissue engineering of fetal compared with perinatal and adult mesenchymal stem cells. Stem Cells 27(1):126–137. https://doi.org/10.1634/stemcells.2008-0456

    Article  CAS  PubMed  Google Scholar 

  31. Montesinos JJ, Flores-Figueroa E, Castillo-Medina S, Flores-Guzman P, Hernandez-Estevez E, Fajardo-Orduna G, Orozco S, Mayani H (2009) Human mesenchymal stromal cells from adult and neonatal sources: comparative analysis of their morphology, immunophenotype, differentiation patterns and neural protein expression. Cytotherapy 11(2):163–176. https://doi.org/10.1080/14653240802582075

    Article  CAS  PubMed  Google Scholar 

  32. Wang X, Kimbrel EA, Ijichi K, Paul D, Lazorchak AS, Chu J, Kouris NA, Yavanian GJ, Lu SJ, Pachter JS, Crocker SJ, Lanza R, Xu RH (2014) Human ESC-derived MSCs outperform bone marrow MSCs in the treatment of an EAE model of multiple sclerosis. Stem Cell Reports 3(1):115–130. https://doi.org/10.1016/j.stemcr.2014.04.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Renna NF, de Las HN, Miatello RM (2013) Pathophysiology of vascular remodeling in hypertension. Int J Hypertens 2013:808353. https://doi.org/10.1155/2013/808353

    Article  PubMed  PubMed Central  Google Scholar 

  34. Korshunov VA, Schwartz SM, Berk BC (2007) Vascular remodeling: hemodynamic and biochemical mechanisms underlying Glagov's phenomenon. Arterioscler Thromb Vasc Biol 27(8):1722–1728. https://doi.org/10.1161/ATVBAHA.106.129254

    Article  CAS  PubMed  Google Scholar 

  35. Gibbons GH, Dzau VJ (1994) The emerging concept of vascular remodeling. N Engl J Med 330(20):1431–1438. https://doi.org/10.1056/NEJM199405193302008

    Article  CAS  PubMed  Google Scholar 

  36. Faca VM, Orellana MD, Greene LJ, Covas DT (2016) Proteomic analysis of mesenchymal stem cells. Methods Mol Biol 1416:509–519. https://doi.org/10.1007/978-1-4939-3584-0_31

    Article  CAS  PubMed  Google Scholar 

  37. Klein D, Benchellal M, Kleff V, Jakob HG, Ergun S (2013) Hox genes are involved in vascular wall-resident multipotent stem cell differentiation into smooth muscle cells. Sci Rep 3:2178. https://doi.org/10.1038/srep02178

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ciuffreda MC, Malpasso G, Musaro P, Turco V, Gnecchi M (2016) Protocols for in vitro differentiation of human mesenchymal stem cells into osteogenic, chondrogenic and adipogenic lineages. Methods Mol Biol 1416:149–158. https://doi.org/10.1007/978-1-4939-3584-0_8

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The respective work was supported by grants of the DFG (GRK1739/2), the BMBF (ZISS 02NUK024-D, ZISStrans 02NUK047D), the Brigitte und Dr. Konstanze Wegener-Stiftung, and the Jürgen Manchot-Stiftung (Düsseldorf, Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana Klein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Klein, D. (2020). Improved Isolation of Human Vascular Wall–Resident Mesenchymal Stem Cells. In: Kioussi, C. (eds) Stem Cells and Tissue Repair . Methods in Molecular Biology, vol 2155. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0655-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0655-1_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0654-4

  • Online ISBN: 978-1-0716-0655-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics