Skip to main content

Theory and Practice in Measuring In-Vitro Extensibility of Growing Plant Cell Walls

  • Protocol
  • First Online:
The Plant Cell Wall

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2149))

Abstract

This chapter summarizes four extensometer techniques for measuring cell wall extensibility in vitro and discusses how the results of these methods relate to the concept and ideal measurement of cell wall extensibility in the context of plant cell growth. These in-vitro techniques are particularly useful for studies of the molecular basis of cell wall extension. Measurements of breaking strength, elastic compliance and plastic compliance may be informative about changes in cell wall structure, whereas measurements of wall stress relaxation and creep are sensitive to both changes in wall structure and wall-loosening processes, such as those mediated by expansins and some lytic enzymes. A combination of methods is needed to obtain a broader view of cell wall behavior and properties connected with the concept of cell wall extensibility .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6:850–861

    CAS  PubMed  Google Scholar 

  2. Cosgrove DJ (2018) Diffuse growth of plant cell walls. Plant Physiol 176:16–27

    CAS  PubMed  Google Scholar 

  3. Chebli Y, Geitmann A (2017) Cellular growth in plants requires regulation of cell wall biochemistry. Curr Opin Cell Biol 44:28–35

    CAS  PubMed  Google Scholar 

  4. Cosgrove DJ (1993) Wall extensibility: its nature, measurement and relationship to plant cell growth. New Phytol 124:1–23

    CAS  PubMed  Google Scholar 

  5. Cosgrove DJ (2016) Plant cell wall extensibility: connecting plant cell growth with cell wall structure, mechanics, and the action of wall-modifying enzymes. J Exp Bot 67:463–476

    CAS  PubMed  Google Scholar 

  6. Zhang T et al (2019) Disentangling loosening from softening: insights into primary cell wall structure. Plant J 100:1101–1117

    Google Scholar 

  7. Zhang T, Zheng Y, Cosgrove DJ (2016) Spatial organization of cellulose microfibrils and matrix polysaccharides in primary plant cell walls as imaged by multichannel atomic force microscopy. Plant J 85:179–192

    CAS  PubMed  Google Scholar 

  8. Weber A et al (2015) Measuring the mechanical properties of plant cells by combining micro-indentation with osmotic treatments. J Exp Bot 66:3229–3241

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Routier-Kierzkowska AL, Smith RS (2013) Measuring the mechanics of morphogenesis. Curr Opin Plant Biol 16:25–32

    PubMed  Google Scholar 

  10. Beauzamy L, Derr J, Boudaoud A (2015) Quantifying hydrostatic pressure in plant cells by using indentation with an atomic force microscope. Biophys J 108:2448–2456

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Elsayad K et al (2016) Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission–Brillouin imaging. Sci Signal 9:rs5

    PubMed  Google Scholar 

  12. Scarcelli G et al (2015) Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy. Nat Methods 12:1132–1134

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Yakubov GE et al (2016) Mapping nano-scale mechanical heterogeneity of primary plant cell walls. J Exp Bot 67:2799–2816

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Braybrook SA (2015) Measuring the elasticity of plant cells with atomic force microscopy. Methods Cell Biol 125:237–254

    CAS  PubMed  Google Scholar 

  15. Routier-Kierzkowska AL, Smith RS (2014) Mechanical measurements on living plant cells by micro-indentation with cellular force microscopy. Methods Mol Biol 1080:135–146

    PubMed  Google Scholar 

  16. Saxe F, Burgert I, Eder M (2015) Structural and mechanical characterization of growing Arabidopsis plant cell walls. Methods Mol Biol 1242:211–227

    PubMed  Google Scholar 

  17. Abasolo W et al (2009) Pectin may hinder the unfolding of xyloglucan chains during cell deformation: implications of the mechanical performance of Arabidopsis hypocotyls with pectin alterations. Mol Plant 2:990–999

    CAS  PubMed  Google Scholar 

  18. Cleland RE (1984) The instron technique as a measure of immediate-past wall extensibility. Planta 160:514–520

    CAS  PubMed  Google Scholar 

  19. Peaucelle A, Wightman R, Hofte H (2015) The control of growth symmetry breaking in the Arabidopsis hypocotyl. Curr Biol 25:1746–1752

    CAS  PubMed  Google Scholar 

  20. Sampathkumar A et al (2014) Subcellular and supracellular mechanical stress prescribes cytoskeleton behavior in Arabidopsis cotyledon pavement cells. eLife 3:e01967

    PubMed  PubMed Central  Google Scholar 

  21. Bonilla MR et al (2015) Interpreting atomic force microscopy nanoindentation of hierarchical biological materials using multi-regime analysis. Soft Matter 11:1281–1292

    CAS  PubMed  Google Scholar 

  22. Jarvis MC (1992) Control of thickness of collenchyma cell walls by pectins. Planta 187:218–220

    CAS  PubMed  Google Scholar 

  23. Cosgrove DJ (2014) Re-constructing our models of cellulose and primary cell wall assembly. Curr Opin Plant Biol 22C:122–131

    Google Scholar 

  24. Hansen SL et al (2011) Mechanical properties of plant cell walls probed by relaxation spectra. Plant Physiol 155:246–258

    CAS  PubMed  Google Scholar 

  25. Haughton PM, Sellen DB, Preston RD (1968) Dynamic mechanical properties of cell wall of Nitella opaca. J Exp Bot 19:1–12

    Google Scholar 

  26. Cleland RE, Haughton PM (1971) The effect of auxin on stress relaxation in isolated Avena coleoptiles. Plant Physiol 47:812–815

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Probine MC, Barber NF (1966) The structure and plastic properties of the cell wall of Nitella in relation to extension growth. Aust J Biol Sci 19:439–457

    Google Scholar 

  28. Geitmann A, Ortega JKE (2009) Mechanics and modeling of plant cell growth. Trends Plant Sci 14:467–478

    CAS  PubMed  Google Scholar 

  29. Ray PM (1987) Principles of plant cell expansion. In: Cosgrove DJ, Knievel DJ (eds) Physiology of cell expansion during plant growth (Symposium in Plant Physiology, Penn State Univ). American Society of Plant Physiologists, Rockville, pp 1–17

    Google Scholar 

  30. Cosgrove DJ (2016) Catalysts of plant cell wall loosening. F1000Res 5. https://doi.org/10.12688/f1000research.7180.1

  31. Cosgrove DJ (1995) Measurements of wall stress relaxation in growing plant cells. Methods Cell Biol 49:231–243

    CAS  PubMed  Google Scholar 

  32. Cosgrove DJ (1987) Wall relaxation in growing stems: comparison of four species and assessment of measurement techniques. Planta 171:266–278

    PubMed  Google Scholar 

  33. Cosgrove DJ, Van Volkenburgh E, Cleland RE (1984) Stress relaxation of cell walls and the yield threshold for growth: demonstration and measurement by micro-pressure probe and psychrometer techniques. Planta 162:46–52

    CAS  PubMed  Google Scholar 

  34. Park YB, Cosgrove DJ (2012) A revised architecture of primary cell walls based on biomechanical changes induced by substrate-specific endoglucanases. Plant Physiol 158:1933–1943

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Durachko DM, Cosgrove DJ (2009) Measuring plant cell wall extension (creep) induced by acidic pH and by alpha-expansin. J Vis Exp (25):1263

    Google Scholar 

  36. Cosgrove DJ (1989) Characterization of long-term extension of isolated cell walls from growing cucumber hypocotyls. Planta 177:121–130

    CAS  PubMed  Google Scholar 

  37. Reiter WD, Chapple CC, Somerville CR (1993) Altered growth and cell walls in a fucose-deficient mutant of Arabidopsis. Science 261:1032–1035

    CAS  PubMed  Google Scholar 

  38. Wainwright SA et al (1976) Mechanical design in organisms. Edward Arnold, London, p 423

    Google Scholar 

  39. Ryden P et al (2003) Tensile properties of Arabidopsis cell walls depend on both a xyloglucan cross-linked microfibrillar network and rhamnogalacturonan II-borate complexes. Plant Physiol 132:1033–1040

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Cavalier DM et al (2008) Disrupting two Arabidopsis thaliana xylosyltransferase genes results in plants deficient in xyloglucan, a major primary cell wall component. Plant Cell 20:1519–1537

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhong RQ et al (2005) Arabidopsis fragile fiber8, which encodes a putative glucuronyltransferase, is essential for normal secondary wall synthesis. Plant Cell 17:3390–3408

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Park YB, Cosgrove DJ (2012) Changes in cell wall biomechanical properties in the xyloglucan-deficient xxt1/xxt2 mutant of Arabidopsis. Plant Physiol 158:465–475

    CAS  PubMed  Google Scholar 

  43. Kha H et al (2010) WallGen, software to construct layered cellulose-hemicellulose networks and predict their small deformation mechanics. Plant Physiol 152:774–786

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Yi H, Puri VM (2012) Architecture-based multiscale computational modeling of plant cell wall mechanics to examine the hydrogen-bonding hypothesis of the cell wall network structure model. Plant Physiol 160:1281–1292

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Veytsman BA, Cosgrove DJ (1998) A model of cell wall expansion based on thermodynamics of polymer networks. Biophys J 75:2240–2250

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Yuan S, Wu Y, Cosgrove DJ (2001) A fungal endoglucanase with plant cell wall extension activity. Plant Physiol 127:324–333

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Ray PM, Green PB, Cleland RE (1972) Role of turgor in plant cell growth. Nature 239:163–164

    Google Scholar 

  48. Cosgrove DJ (1985) Cell wall yield properties of growing tissues. Evaluation by in vivo stress relaxation. Plant Physiol 78:347–356

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Yamamoto R, Shinozak K, Masuda Y (1970) Stress-relaxation properties of plant cell walls with special reference to auxin action. Plant Cell Physiol 11:947–956

    CAS  Google Scholar 

  50. Yamamoto R, Kawamura H, Masuda Y (1974) Stress relaxation properties of the cell wall of growing intact plants. Plant Cell Physiol 15:1073–1082

    Google Scholar 

  51. Fujihara S, Yamamoto R, Masuda Y (1978) Viscolelastic properties of plant cell walls II. Effect of pre-extension rate of stress relaxation. Biorheology 15:77–85

    CAS  PubMed  Google Scholar 

  52. McQueen-Mason SJ, Cosgrove DJ (1995) Expansin mode of action on cell walls. Analysis of wall hydrolysis, stress relaxation, and binding. Plant Physiol 107:87–100

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Takahashi K et al (2006) Wall-yielding properties of cell walls from elongating cucumber hypocotyls in relation to the action of expansin. Plant Cell Physiol 47:1520–1529

    CAS  PubMed  Google Scholar 

  54. McQueen-Mason S, Durachko DM, Cosgrove DJ (1992) Two endogenous proteins that induce cell wall extension in plants. Plant Cell 4:1425–1433

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Zerzour R, Kroeger J, Geitmann A (2009) Polar growth in pollen tubes is associated with spatially confined dynamic changes in cell mechanical properties. Dev Biol 334:437–446

    CAS  PubMed  Google Scholar 

  56. Milani P et al (2011) In vivo analysis of local wall stiffness at the shoot apical meristem in Arabidopsis using atomic force microscopy. Plant J 67:1116–1123

    CAS  PubMed  Google Scholar 

  57. Kierzkowski D et al (2012) Elastic domains regulate growth and organogenesis in the plant shoot apical meristem. Science 335:1096–1099

    CAS  PubMed  Google Scholar 

  58. Bolduc JE et al (2006) Finite-element analysis of geometrical factors in micro-indentation of pollen tubes. Biomech Model Mechanobiol 5:227–236

    PubMed  Google Scholar 

Download references

Acknowledgments

This chapter is based upon work supported as part of The Center for Lignocellulose Structure and Formation, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001090. The research on expansins and cell wall creep was supported by Award number DE-FG02-84ER13179 from the Department of Energy Office of Basic Energy Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Cosgrove .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cosgrove, D.J. (2020). Theory and Practice in Measuring In-Vitro Extensibility of Growing Plant Cell Walls. In: Popper, Z. (eds) The Plant Cell Wall. Methods in Molecular Biology, vol 2149. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0621-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0621-6_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0619-3

  • Online ISBN: 978-1-0716-0621-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics