Skip to main content

Development and Validation of a 3D In Vitro Model to Study the Chemotactic Behavior of Corneal Stromal Fibroblasts

  • Protocol
  • First Online:
Corneal Regeneration

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2145))

Abstract

Chemotaxis plays a pivotal role in crucial biological phenomena including immune response, cancer metastasis, and wound healing. Although many chemotaxis assays have been developed to better understand these multicomplex biological mechanisms, most of them have serious limitations mainly due to the poor representation of native three-dimensional (3D) microenvironment. Here, we describe a method to develop and validate a novel 3D in vitro chemotaxis model to study the migration of corneal fibroblasts through a stromal equivalent. A hydrogel was used that contained gelatin microspheres loaded with platelet-derived growth factor-BB (PDGF-BB) in the inner section and corneal fibroblasts in the outer section. The cell migration toward the chemical stimuli over time can be monitored via confocal microscopy. The development of this in vitro model can be used for both qualitative and quantitative examinations of chemotaxis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kolsch V, Charest PG, Firtel RA (2008) The regulation of cell motility and chemotaxis by phospholipid signaling. J Cell Sci 121(Pt 5):551–559. https://doi.org/10.1242/jcs.023333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rees PA, Greaves NS, Baguneid M, Bayat A (2015) Chemokines in wound healing and as potential therapeutic targets for reducing cutaneous scarring. Adv Wound Care 4(11):687–703. https://doi.org/10.1089/wound.2014.0568

    Article  Google Scholar 

  3. Jester JV, Petroll WM, Cavanagh HD (1999) Corneal stromal wound healing in refractive surgery: the role of myofibroblasts. Prog Retin Eye Res 18(3):311–356

    Article  CAS  Google Scholar 

  4. Fernandez-Perez J, Ahearne M (2019) Influence of biochemical cues in human corneal stromal cell phenotype. Curr Eye Res 44(2):135–146. https://doi.org/10.1080/02713683.2018.1536216

    Article  CAS  PubMed  Google Scholar 

  5. Matsuda H, Smelser GK (1973) Electron microscopy of corneal wound healing. Exp Eye Res 16(6):427–442. https://doi.org/10.1016/0014-4835(73)90100-0

    Article  CAS  PubMed  Google Scholar 

  6. Kratz-Owens KL, Hageman GS, Schanzlin DJ (1992) An in-vivo technique for monitoring keratocyte migration following lamellar keratoplasty. Refract Corneal Surg 8(3):230–234

    CAS  PubMed  Google Scholar 

  7. Lee TJ, Wan WL, Kash RL, Kratz KL, Schanzlin DJ (1985) Keratocyte survival following a controlled-rate freeze. Invest Ophthalmol Vis Sci 26(9):1210–1215

    CAS  PubMed  Google Scholar 

  8. Cano PM, Vargas A, Lavoie JP (2016) A real-time assay for neutrophil chemotaxis. BioTechniques 60(5):245–251. https://doi.org/10.2144/000114416

    Article  CAS  PubMed  Google Scholar 

  9. Whitehead BC, Bezuidenhout D, Chokoza C, Davies NH, Goetsch KP (2016) Cast tube assay: a 3-d in vitro assay for visualization and quantification of horizontal chemotaxis and cellular invasion. BioTechniques 61(2):66–72. https://doi.org/10.2144/000114442

    Article  CAS  PubMed  Google Scholar 

  10. Li J, Lin F (2011) Microfluidic devices for studying chemotaxis and electrotaxis. Trends Cell Biol 21(8):489–497. https://doi.org/10.1016/j.tcb.2011.05.002

    Article  CAS  PubMed  Google Scholar 

  11. Ahearne M, Buckley CT, Kelly DJ (2011) A growth factor delivery system for chondrogenic induction of infrapatellar fat pad-derived stem cells in fibrin hydrogels. Biotechnol Appl Biochem 58(5):345–352. https://doi.org/10.1002/bab.45

    Article  CAS  PubMed  Google Scholar 

  12. Cheema U, Brown RA (2013) Rapid fabrication of living tissue models by collagen plastic compression: Understanding three-dimensional cell matrix repair in vitro. Adv Wound Care (New Rochelle) 2(4):176–184. https://doi.org/10.1089/wound.2012.0392

    Article  Google Scholar 

Download references

Acknowledgement

This research is supported by European Research Council starting grant [EYEREGEN-637460].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Ahearne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kabak, E.C., Fernández-Pérez, J., Ahearne, M. (2020). Development and Validation of a 3D In Vitro Model to Study the Chemotactic Behavior of Corneal Stromal Fibroblasts. In: Ahearne, M. (eds) Corneal Regeneration. Methods in Molecular Biology, vol 2145. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0599-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0599-8_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0598-1

  • Online ISBN: 978-1-0716-0599-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics