Skip to main content

In Vivo Analysis of Glial Immune Responses to Axon Degeneration in Drosophila melanogaster

  • Protocol
  • First Online:
Axon Degeneration

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2143))

Abstract

Axon degeneration elicits a range of immune responses from local glial cells, including striking changes in glial gene expression, morphology, and phagocytic activity. Here, we describe a detailed set of protocols to assess discrete components of the glial reaction to axotomy in the adult nervous system of Drosophila melanogaster. These methods allow one to visualize and quantify transcriptional, morphological, and functional responses of glia to degenerating axons in a model system that is highly amenable to genetic manipulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Logan MA, Freeman MR (2007) The scoop on the fly brain: glial engulfment functions in Drosophila. Neuron Glia Biol 3(1):63–74. https://doi.org/10.1017/S1740925X07000646

    Article  PubMed  PubMed Central  Google Scholar 

  2. Liddelow SA, Barres BA (2017) Reactive astrocytes: production, function, and therapeutic potential. Immunity 46(6):957–967. https://doi.org/10.1016/j.immuni.2017.06.006

    Article  CAS  PubMed  Google Scholar 

  3. Salter MW, Stevens B (2017) Microglia emerge as central players in brain disease. Nat Med 23(9):1018–1027. https://doi.org/10.1038/nm.4397

    Article  CAS  PubMed  Google Scholar 

  4. Jassam YN, Izzy S, Whalen M, McGavern DB, El Khoury J (2017) Neuroimmunology of traumatic brain injury: time for a paradigm shift. Neuron 95(6):1246–1265. https://doi.org/10.1016/j.neuron.2017.07.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Logan MA (2017) Glial contributions to neuronal health and disease: new insights from Drosophila. Curr Opin Neurobiol 47:162–167. https://doi.org/10.1016/j.conb.2017.10.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pekny M, Wilhelmsson U, Tatlisumak T, Pekna M (2018) Astrocyte activation and reactive gliosis-A new target in stroke? Neurosci Lett 2018:pii:S0304-3940(18)30490-7. https://doi.org/10.1016/j.neulet.2018.07.021

    Article  CAS  Google Scholar 

  7. MacDonald JM, Beach MG, Porpiglia E, Sheehan AE, Watts RJ, Freeman MR (2006) The Drosophila cell corpse engulfment receptor Draper mediates glial clearance of severed axons. Neuron 50(6):869–881. https://doi.org/10.1016/j.neuron.2006.04.028

    Article  CAS  PubMed  Google Scholar 

  8. Logan MA, Hackett R, Doherty J, Sheehan A, Speese SD, Freeman MR (2012) Negative regulation of glial engulfment activity by Draper terminates glial responses to axon injury. Nat Neurosci 15(5):722–730. https://doi.org/10.1038/nn.3066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. MacDonald JM, Doherty J, Hackett R, Freeman MR (2013) The c-Jun kinase signaling cascade promotes glial engulfment activity through activation of Draper and phagocytic function. Cell Death Differ 20(9):1140–1148. https://www.nature.com/articles/cdd201330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Doherty J, Sheehan AE, Bradshaw R, Fox AN, Lu TY, Freeman MR (2014) PI3K signaling and Stat92E converge to modulate glial responsiveness to axonal injury. PLoS Biol 12(11):e1001985–e1001916. https://doi.org/10.1371/journal.pbio.1001985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lee YM, Sun YH (2015) Drosophila as a model to study the role of glia in neurodegeneration. J Neurogenet 29(2–3):69–79. https://doi.org/10.3109/01677063.2015.1076816

    Article  CAS  PubMed  Google Scholar 

  12. Musashe DT, Purice MD, Speese SD, Doherty J, Logan MA (2016) Insulin-like signaling promotes glial phagocytic clearance of degenerating axons through regulation of Draper. Cell Rep 16(7):1838–1850. https://www.sciencedirect.com/science/article/pii/S2211124716309238?via%3Dihub

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Etchegaray JI, Elguero EJ, Tran JA, Sinatra V, Feany MB, McCall K (2016) Defective phagocytic corpse processing results in neurodegeneration and can be rescued by TORC1 activation. J Neurosci 36(11):3170–3183. https://doi.org/10.1523/JNEUROSCI.1912-15.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kato K, Losada-Perez M, Hidalgo A (2018) Gene network underlying the glial regenerative response to central nervous system injury. Dev Dyn 247(1):85–93. https://doi.org/10.1002/dvdy.24565

    Article  CAS  PubMed  Google Scholar 

  15. Purice MD, Ray A, Münzel EJ, Pope BJ, Park DJ, Speese SD, Logan MA (2017) A novel Drosophila injury model reveals severed axons are cleared through a Draper/MMP-1 signaling cascade. Elife 6:pii: e2361. https://elifesciences.org/articles/23611

    Article  Google Scholar 

  16. Awasaki T, Lai SL, Ito K, Lee T (2008) Organization and postembryonic development of glial cells in the adult central brain of Drosophila. J Neurosci 28(51):13742–13753. https://doi.org/10.1523/JNEUROSCI.4844-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Doherty J, Logan MA, Tasdemir OE, Freeman MR (2009) Ensheathing glia function as phagocytes in the adult Drosophila brain. J Neurosci 29(15):4768–4781. https://doi.org/10.1523/JNEUROSCI.5951-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hartenstein V (2011) Morphological diversity and development of glia in Drosophila. Glia 59(9):1237–1252. https://doi.org/10.1002/glia.21162

    Article  PubMed  PubMed Central  Google Scholar 

  19. Yu HH, Awasaki T, Schroeder MD, Long F, Yang JS, He Y, Ding P, Kao JC, Wu GY, Peng H, Myers G, Lee T (2013) Clonal development and organization of the adult Drosophila central brain. Curr Biol 23(8):633–643. https://doi.org/10.1016/j.cub.2013.02.057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Omoto JJ, Yogi P, Hartenstein V (2015) Origin and development of neuropil glia of the Drosophila larval and adult brain: Two distinct glial populations derived from separate progenitors. Dev Biol 404(2):2–20. https://doi.org/10.1016/j.ydbio.2015.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kremer MC, Jung C, Batelli S, Rubin GM, Gaul U (2017) The glia of the adult Drosophila nervous system. Glia 65(4):606–638. https://doi.org/10.1002/glia.23115

    Article  PubMed  PubMed Central  Google Scholar 

  22. Iram T, Ramirez-Ortiz Z, Byrne MH, Coleman UA, Kingery ND, Means TK, Frenkel D, El Khoury J (2016) Megf10 is a receptor for C1Q that mediates clearance of apoptotic cells by astrocytes. J Neurosci 36(19):5185–5192. https://doi.org/10.1523/JNEUROSCI.3850-15.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chung WS, Clarke LE, Wang GX, Stafford BK, Sher A, Chakraborty C, Joung J, Foo LC, Thompson A, Chen C, Smith SJ, Barres BA (2013) Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways. Nature 504(7480):394–400. https://doi.org/10.1038/nature12776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Scheib JL, Sullivan CS, Carter BD (2012) Jedi-1 and MEGF10 signal engulfment of apoptotic neurons through the tyrosine kinase Syk. J Neurosci 32(38):13022–13031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Petersen AJ, Katzenberger RJ, Wassarman DA (2013) The innate immune response transcription factor relish is necessary forneurodegeneration in a Drosophila model of ataxia-telangiectasia. Genetics 194(1):133–142. https://doi.org/10.1534/genetics.113.150854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Page-McCaw A, Serano J, Santé JM, Rubin GM (2003) Drosophila matrix metalloproteinases are required for tissue remodeling, but not embryonic development. Dev Cell 4(1):95–106. https://www.sciencedirect.com/science/article/pii/S1534580702004008?via%3Dihub

    Article  CAS  PubMed  Google Scholar 

  27. Yao Y, Wu Y, Yin C, Ozawa R, Aigaki T, Wouda RR, Noordermeer JR, Fradkin LG, Hing H (2007) Antagonistic roles of Wnt5 and the Drl receptor in patterning the Drosophila antennal lobe. Nat Neurosci 10:1423–1432. https://www.nature.com/articles/nn1993

    Article  CAS  PubMed  Google Scholar 

  28. Bach EA, Ekas LA, Ayala-Camargo A, Flaherty MS, Lee H et al (2007) GFP reporters detect the activation of the Drosophila JAK/STAT pathway in vivo. Gene Expr Patterns 7:323–331. https://www.sciencedirect.com/science/article/pii/S1567133X06001566?via%3Dihub

    Article  CAS  PubMed  Google Scholar 

  29. Chatterjee N, Bohmann D (2012) A versatile ΦC31 based reporter system for measuring AP-1 and Nrf2 signaling in Drosophila and in tissue culture. PLoS One 7(4):e34063. https://doi.org/10.1371/journal.pone.0034063. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0034063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3(6):1101–1108. https://www.nature.com/articles/nprot.2008.73

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Maria Purice, Petra Richer, Derek Musashe, and Lilly Winfree for outstanding technical and intellectual contributions to this work. We thank Marc Freeman, Dirk Bohmann, Bloomington Drosophila Stock Center at Indiana University, and the Developmental Studies Hybridoma Bank at the University of Iowa for flies and antibodies. Funding: NIH R21 NS084112 (M.A.L. and S.D.S.), NIH R21 NS107771 (M.A.L.), NSF1557975 (S.D.S.), and the Ken and Ginger Harrison Term Professor Award (M.A.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary A. Logan .

Editor information

Editors and Affiliations

1 5. Electronic Supplementary Material

Netwell construction (MP4 1,087,572 kb)

Maxillary and Antennal Ablation (MP4 115,683 kb)

Adult VNC injury (MP4 79,269 kb)

Pulling adult Drosophila Heads (MP4 56,147 kb)

Adult Brain Dissection (MP4 74,073 kb)

Adult VNC Dissection (MP4 181,843 kb)

Revised Mounting adult CNS (MP4 312,061 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Logan, M.A., Speese, S.D. (2020). In Vivo Analysis of Glial Immune Responses to Axon Degeneration in Drosophila melanogaster. In: Babetto, E. (eds) Axon Degeneration. Methods in Molecular Biology, vol 2143. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0585-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0585-1_24

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0584-4

  • Online ISBN: 978-1-0716-0585-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics