Skip to main content

Production of Intrinsically Disordered Proteins for Biophysical Studies: Tips and Tricks

  • Protocol
  • First Online:
Intrinsically Disordered Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2141))

Abstract

Intrinsically disordered proteins (IDPs) have no single, fixed tertiary structure, yet they take on many vital functions in biology. In recent years, considerable effort has been put into the structural characterization of their conformational ensembles, to understand the link between the transient, short- and long-range organizations of IDPs and their functions. Such biophysical studies require substantial amounts of pure protein, representing a major bottleneck in the studies of IDPs. However, the unique physicochemical properties resulting from their compositional bias may be exploited for simple yet effective purification strategies. In this chapter, we provide tips and tricks for IDP production and describe the most important analyses to carry out before bringing an IDP of interest to the laboratory. We outline four purification protocols utilizing the unique properties of IDPs as well as some commonly encountered challenges and pitfalls.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Habchi J, Tompa P, Longhi S, Uversky VN (2014) Introducing protein intrinsic disorder. Chem Rev 114:6561–6588. https://doi.org/10.1021/cr400514h

    Article  CAS  PubMed  Google Scholar 

  2. Dobson CM (2003) Protein folding and misfolding. Nature 426:884–890. https://doi.org/10.1038/nature02261

    Article  CAS  PubMed  Google Scholar 

  3. Borgia A, Borgia MB, Bugge K et al (2018) Extreme disorder in an ultrahigh-affinity protein complex. Nature 555:61–66. https://doi.org/10.1038/nature25762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tompa P, Fuxreiter M (2008) Fuzzy complexes: polymorphism and structural disorder in protein-protein interactions. Trends Biochem Sci 33:2–8. https://doi.org/10.1016/j.tibs.2007.10.003

    Article  CAS  PubMed  Google Scholar 

  5. Ward JJ, Sodhi JS, McGuffin LJ et al (2004) Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J Mol Biol 337(3):635–645. https://doi.org/10.1016/j.jmb.2004.02.002

    Article  CAS  PubMed  Google Scholar 

  6. Dunker AK, Lawson JD, Brown CJ et al (2001) Intrinsically disordered protein. J Mol Graph Model 19:26–59. https://doi.org/10.1016/S1093-3263(00)00138-8

    Article  CAS  Google Scholar 

  7. Dunker AK, Cortese MS, Romero P et al (2005) Flexible nets. The roles of intrinsic disorder in protein interaction networks. FEBS J 272:5129–5148. https://doi.org/10.1111/j.1742-4658.2005.04948.x

    Article  CAS  Google Scholar 

  8. Uversky VN (2002) What does it mean to be natively unfolded? Eur J Biochem 269:2–12. https://doi.org/10.1110/ps.4210102.matic

    Article  CAS  PubMed  Google Scholar 

  9. Prestel A, Bugge K, Staby L et al (2018) Characterization of dynamic IDP complexes by NMR spectroscopy. In: Intrinsically disordered proteins, 1st edn. Elsevier Inc., Amsterdam, pp 193–226

    Chapter  Google Scholar 

  10. Konrat R (2014) NMR contributions to structural dynamics studies of intrinsically disordered proteins. J Magn Reson 241:74–85. https://doi.org/10.1016/j.jmr.2013.11.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Feil SC, Polekhina G, Gorman MA, Parker MW (2015) Intrinsically disordered proteins studied by NMR spectroscopy. Springer International Publishing, Cham

    Google Scholar 

  12. Juturu V, Wu JC (2018) Heterologous protein expression in Pichia pastoris: latest research progress and applications. Chembiochem 19:7–21. https://doi.org/10.1002/cbic.201700460

    Article  CAS  PubMed  Google Scholar 

  13. Bernhard F, Tozawa Y (2013) Cell-free expression—making a mark. Curr Opin Struct Biol 23:374–380. https://doi.org/10.1016/j.sbi.2013.03.012

    Article  CAS  PubMed  Google Scholar 

  14. Nielsen JT, Mulder FAA (2019) Quality and bias of protein disorder predictors. Sci Rep 9:1–11. https://doi.org/10.1038/s41598-019-41644-w

    Article  CAS  Google Scholar 

  15. Millard PS, Bugge K, Marabini R et al (2020) IDDomainSpotter: compositional bias reveals domains in long disordered protein regions - insights from transcription factors. Protein Sci 29(1):169–183. https://doi.org/10.1002/pro.3754

    Article  CAS  PubMed  Google Scholar 

  16. Lacroix E, Viguera AR, Serrano L (1998) Elucidating the folding problem of α-helices: local motifs, long-range electrostatics, ionic-strength dependence and prediction of NMR parameters 1 1Edited by a. R. Fersht. J Mol Biol 284:173–191. https://doi.org/10.1006/jmbi.1998.2145

    Article  CAS  PubMed  Google Scholar 

  17. Dinkel H, Van Roey K, Michael S et al (2016) ELM 2016—data update and new functionality of the eukaryotic linear motif resource. Nucleic Acids Res 44:D294–D300. https://doi.org/10.1093/nar/gkv1291

    Article  CAS  PubMed  Google Scholar 

  18. Disfani FM, Hsu WL, Mizianty MJ et al (2012) MoRFpred, a computational tool for sequence-based prediction and characterization of short disorder-to-order transitioning binding regions in proteins. Bioinformatics 28:75–83. https://doi.org/10.1093/bioinformatics/bts209

    Article  CAS  Google Scholar 

  19. Contreras-Martos S, Nguyen HH, Nguyen PN et al (2016) Quantification of intrinsically disordered proteins: a problem not fully appreciated. Front Mol Biosci 5:83. https://doi.org/10.3389/fmolb.2018.00083

    Article  CAS  Google Scholar 

  20. Smith PK, Krohn RI, Hermanson GT et al (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150(1):76–85. https://doi.org/10.1016/0003-2697(85)90442-7

    Article  CAS  PubMed  Google Scholar 

  21. Anthis NJ, Clore GM (2013) Sequence-specific determination of protein and peptide concentrations by absorbance at 205 nm. Protein Sci 22:851–858. https://doi.org/10.1002/pro.2253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kuipers BJH, Gruppen H (2007) Prediction of molar extinction coefficients of proteins and peptides using UV absorption of the constituent amino acids at 214 nm to enable quantitative reverse phase high-performance liquid chromatography−mass spectrometry analysis. J Agric Food Chem 55:5445–5451. https://doi.org/10.1021/jf070337l

    Article  CAS  PubMed  Google Scholar 

  23. Quax TEF, Claassens NJ, Söll D, van der Oost J (2015) Codon bias as a means to fine-tune gene expression. Mol Cell 59:149–161. https://doi.org/10.1016/j.molcel.2015.05.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. O Calçada E, Korsak M, Kozyreva T (2015) Recombinant intrinsically disordered proteins for NMR: tips and tricks. In: Felli IC, Pierattelli R (eds) Intrinsically disordered proteins studied by NMR spectroscopy. Springer International Publishing, Cham, pp 187–213

    Chapter  Google Scholar 

  25. Paz A, Zeev-Ben-Mordehai T, Sussman JL, Silman I (2010) Purification of intrinsically disordered proteins. In: Instrumental analysis of intrinsically disordered proteins. John Wiley & Sons, Inc., Hoboken, NJ, USA, pp 695–704

    Chapter  Google Scholar 

  26. Graether SP (2019) Troubleshooting guide to expressing intrinsically disordered proteins for use in NMR experiments. Front Mol Biosci 5:1–19. https://doi.org/10.3389/fmolb.2018.00118

    Article  CAS  Google Scholar 

  27. Kalthoff C (2003) A novel strategy for the purification of recombinantly expressed unstructured protein domains. J Chromatogr B 786:247–254. https://doi.org/10.1016/S1570-0232(02)00908-X

    Article  CAS  Google Scholar 

  28. Livernois AM, Hnatchuk DJ, Findlater EE, Graether SP (2009) Obtaining highly purified intrinsically disordered protein by boiling lysis and single step ion exchange. Anal Biochem 392:70–76. https://doi.org/10.1016/j.ab.2009.05.023

    Article  CAS  PubMed  Google Scholar 

  29. Neyroz P, Ciurli S, Uversky VN (2012) Denaturant-induced conformational transitions in intrinsically disordered proteins. In: Uversky VN, Dunker AK (eds) Intrinsically disordered protein analysis volume 2, methods and experimental tools. Springer New York, New York, NY, pp 197–213

    Chapter  Google Scholar 

  30. Uversky VN (2019) Intrinsically disordered proteins and their “mysterious” (meta)physics. Front Phys 7:8–23. https://doi.org/10.3389/fphy.2019.00010

    Article  Google Scholar 

  31. Novák P, Havlíček V (2016) Protein extraction and precipitation. In: Proteomic profiling and analytical chemistry. Elsevier, Amsterdam, pp 51–62

    Chapter  Google Scholar 

  32. Campos F, Guillén G, Reyes JL, Covarrubias AA (2011) A general method of protein purification for recombinant unstructured non-acidic proteins. Protein Expr Purif 80:47–51. https://doi.org/10.1016/j.pep.2011.06.007

    Article  CAS  PubMed  Google Scholar 

  33. Walsh DM, Thulin E, Minogue AM et al (2009) A facile method for expression and purification of the Alzheimer’s disease-associated amyloid β-peptide. FEBS J 276:1266–1281. https://doi.org/10.1111/j.1742-4658.2008.06862.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Huang C, Ren G, Zhou H, Wang C (2005) A new method for purification of recombinant human α-synuclein in Escherichia coli. Protein Expr Purif 42:173–177. https://doi.org/10.1016/j.pep.2005.02.014

    Article  CAS  PubMed  Google Scholar 

  35. Tsytlonok M, Sanabria H, Wang Y et al (2019) Dynamic anticipation by Cdk2/Cyclin A-bound p27 mediates signal integration in cell cycle regulation. Nat Commun 10:1676. https://doi.org/10.1038/s41467-019-09446-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Danielsson J, Liljedahl L, Bárány-Wallje E et al (2008) The intrinsically disordered RNR inhibitor Sml1 is a dynamic dimer †. Biochemistry 47:13428–13437. https://doi.org/10.1021/bi801040b

    Article  CAS  PubMed  Google Scholar 

  37. Yu CH, Dang Y, Zhou Z et al (2015) Codon usage influences the local rate of translation elongation to regulate co-translational protein folding. Mol Cell 59:744–754. https://doi.org/10.1016/j.molcel.2015.07.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Marblestone JG (2006) Comparison of SUMO fusion technology with traditional gene fusion systems: enhanced expression and solubility with SUMO. Protein Sci 15:182–189. https://doi.org/10.1110/ps.051812706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li C, Schwabe JWR, Banayo E, Evans RM (1997) Coexpression of nuclear receptor partners increases their solubility and biological activities. Proc Natl Acad Sci 94:2278–2283. https://doi.org/10.1073/pnas.94.6.2278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dumon-Seignovert L, Cariot G, Vuillard L (2004) The toxicity of recombinant proteins in Escherichia coli: a comparison of overexpression in BL21(DE3), C41(DE3), and C43(DE3). Protein Expr Purif 37:203–206. https://doi.org/10.1016/j.pep.2004.04.025

    Article  CAS  PubMed  Google Scholar 

  41. Yabré M, Ferey L, Somé I, Gaudin K (2018) Greening reversed-phase liquid chromatography methods using alternative solvents for pharmaceutical analysis. Molecules 23:1065. https://doi.org/10.3390/molecules23051065

    Article  CAS  PubMed Central  Google Scholar 

  42. van Boekel MAJ (1999) Heat-induced deamidation, dephosphorylation and breakdown of caseinate. Int Dairy J 9:237–241. https://doi.org/10.1016/S0958-6946(99)00068-0

    Article  Google Scholar 

  43. Bhanuramanand K, Ahmad S, Rao NM (2014) Engineering deamidation-susceptible asparagines leads to improved stability to thermal cycling in a lipase. Protein Sci 23:1479–1490. https://doi.org/10.1002/pro.2516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tompa P (2002) Intrinsically unstructured proteins. Trends Biochem Sci 27:527–533. https://doi.org/10.1016/S0968-0004(02)02169-2

    Article  CAS  PubMed  Google Scholar 

  45. Rajalingam D, Loftis C, Xu JJ, Kumar TKS (2009) Trichloroacetic acid-induced protein precipitation involves the reversible association of a stable partially structured intermediate. Protein Sci 18:980–993. https://doi.org/10.1002/pro.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Churion KA, Bondos SE (2012) Identifying solubility-promoting buffers for intrinsically disordered proteins prior to purification. In: Uversky VN, Dunker AK (eds) Intrinsically disordered protein analysis volume 2, methods and experimental tools. Springer New York, New York, NY, pp 415–427

    Chapter  Google Scholar 

  47. Thermo Fisher Scientific Inc. (2016) Calculations for protein A280 measurements. In: NanoDrop One User Guide. Thermo Fisher Scientific Inc., Waltham, Massachusetts, p 68

    Google Scholar 

Download references

Acknowledgments

We are grateful to the members of SBiNLab for many insightful discussions on IDPs and purification. This work is a contribution from the Novo Nordisk Foundation Challenge Center REPIN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrine Bugge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pedersen, C.P., Seiffert, P., Brakti, I., Bugge, K. (2020). Production of Intrinsically Disordered Proteins for Biophysical Studies: Tips and Tricks. In: Kragelund, B.B., Skriver, K. (eds) Intrinsically Disordered Proteins. Methods in Molecular Biology, vol 2141. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0524-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0524-0_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0523-3

  • Online ISBN: 978-1-0716-0524-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics