Skip to main content

Targeting an Intrinsically Disordered Protein by Covalent Modification

  • Protocol
  • First Online:
Intrinsically Disordered Proteins

Abstract

Intrinsically disordered proteins (IDPs) play important roles in the regulation of cellular function and in disease, and thus they represent an important group of therapeutic targets. Yet, members of this “disorderome” have not yet been successfully targeted by drugs, primarily because traditional design principles cannot be applied to their highly dynamic, heterogeneous structural states. Binders developed against IDPs so far suffer from very weak binding and inability to act in a cellular context. Here, we describe a possible generic method for the targeting of IDPs via covalent modification, which could entail specific and strong binding and inhibitory potential, making such “warheads” reasonable starting points of drug-development efforts. We demonstrate this principle by addressing the cysteine-specific covalent modification of calpastatin, the IDP inhibitor of the calcium-dependent cysteine protease calpain. We describe the protocol for monitoring the covalent modification of the inhibitor, measuring the Ki of its inhibition and comparing it to the Kd of its interaction with the enzyme. Our premise is that the underlying principles can be easily adapted to screen for molecules targeting other, disease-related, IDPs in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tompa P (2002) Intrinsically unstructured proteins. Trends Biochem Sci 27:527–533

    Article  CAS  Google Scholar 

  2. van der Lee R, Buljan M, Lang B et al (2014) Classification of intrinsically disordered regions and proteins. Chem Rev 114:6589–6631

    Article  Google Scholar 

  3. Arai M, Sugase K, Dyson HJ et al (2015) Conformational propensities of intrinsically disordered proteins influence the mechanism of binding and folding. Proc Natl Acad Sci U S A 112:9614–9619

    Article  CAS  Google Scholar 

  4. Pancsa R, Tompa P (2012) Structural disorder in eukaryotes. PLoS One 7:e34687

    Article  CAS  Google Scholar 

  5. Uversky VN, Oldfield CJ, Dunker AK (2008) Intrinsically disordered proteins in human diseases: introducing the D2 concept. Annu Rev Biophys 37:215–246

    Article  CAS  Google Scholar 

  6. Cheng Y, LeGall T, Oldfield CJ et al (2006) Rational drug design via intrinsically disordered protein. Trends Biotechnol 24:435–442

    Article  CAS  Google Scholar 

  7. Metallo SJ (2010) Intrinsically disordered proteins are potential drug targets. Curr Opin Chem Biol 14:481–488

    Article  CAS  Google Scholar 

  8. Vassilev LT, Vu BT, Graves B et al (2004) In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303:844–848

    Article  CAS  Google Scholar 

  9. Iconaru LI, Ban D, Bharatham K et al (2015) Discovery of small molecules that inhibit the disordered protein, p27(Kip1). Sci Rep 5:15686

    Article  CAS  Google Scholar 

  10. Erkizan HV, Kong Y, Merchant M et al (2009) A small molecule blocking oncogenic protein EWS-FLI1 interaction with RNA helicase A inhibits growth of Ewing’s sarcoma. Nat Med 15:750–756

    Article  CAS  Google Scholar 

  11. Toth G, Gardai SJ, Zago W et al (2014) Targeting the intrinsically disordered structural ensemble of alpha-synuclein by small molecules as a potential therapeutic strategy for Parkinson’s disease. PLoS One 9:e87133

    Article  Google Scholar 

  12. Myung JK, Banuelos CA, Fernandez JG et al (2013) An androgen receptor N-terminal domain antagonist for treating prostate cancer. J Clin Invest 123:2948–2960

    Article  CAS  Google Scholar 

  13. Singh J, Petter RC, Baillie TA et al (2011) The resurgence of covalent drugs. Nat Rev Drug Discov 10:307–317

    Article  CAS  Google Scholar 

  14. Robertson JG (2005) Mechanistic basis of enzyme-targeted drugs. Biochemistry 44:5561–5571

    Article  CAS  Google Scholar 

  15. Cheng H, Nair SK, Murray BW (2016) Recent progress on third generation covalent EGFR inhibitors. Bioorg Med Chem Lett 26:1861–1868

    Article  CAS  Google Scholar 

  16. Engel J, Richters A, Getlik M et al (2015) Targeting drug resistance in EGFR with covalent inhibitors: a structure-based design approach. J Med Chem 58:6844–6863

    Article  CAS  Google Scholar 

  17. Schwartz P, Kuzmic P, Solowiej J et al (2014) Covalent EGFR inhibitor analysis reveals importance of reversible interactions to potency and mechanisms of drug resistance. Proc Natl Acad Sci U S A 111:173–178

    Article  CAS  Google Scholar 

  18. Ono Y, Sorimachi H (2012) Calpains: an elaborate proteolytic system. Biochim Biophys Acta 1824:224–236

    Article  CAS  Google Scholar 

  19. Moldoveanu T, Gehring K, Green DR (2008) Concerted multi-pronged attack by calpastatin to occlude the catalytic cleft of heterodimeric calpains. Nature 456:404–408

    Article  CAS  Google Scholar 

  20. Gehringer M, Laufer SA (2019) Emerging and re-emerging warheads for targeted covalent inhibitors: applications in medicinal chemistry and chemical biology. J Med Chem

    Google Scholar 

  21. Abranyi-Balogh P, Petri L, Imre T et al (2018) A road map for prioritizing warheads for cysteine targeting covalent inhibitors. Eur J Med Chem 160:94–107

    Article  CAS  Google Scholar 

  22. Cravatt BF (2017) Compositions and methods of modulating immune response. Patent WO2017210600A1. World Intellectual Property Organization (WIPO)

    Google Scholar 

  23. Beyer U, Krueger M, Schumacher P et al (1997) Synthesis of new bifunctional maleimide compounds for the preparation of chemoimmunoconjugates. Chem Month 1997:91–102

    Article  Google Scholar 

  24. Nguyen HH, Volkov AN, Vandenbussche G et al (2018) In vivo biotinylated calpastatin improves the affinity purification of human m-calpain. Protein Expr Purif 145:77–84

    Article  CAS  Google Scholar 

  25. Shannon DA, Weerapana E (2015) Covalent protein modification: the current landscape of residue-specific electrophiles. Curr Opin Chem Biol 24:18–26

    Article  CAS  Google Scholar 

  26. Flanagan ME, Abramite JA, Anderson DP et al (2014) Chemical and computational methods for the characterization of covalent reactive groups for the prospective design of irreversible inhibitors. J Med Chem 57:10072–10079

    Article  CAS  Google Scholar 

  27. Murphy DJ (2004) Determination of accurate KI values for tight-binding enzyme inhibitors: an in silico study of experimental error and assay design. Anal Biochem 327:61–67

    Article  CAS  Google Scholar 

  28. Copeland RA (2005) Evaluation of enzyme inhibitors in drug discovery. A guide for medicinal chemists and pharmacologists. Methods Biochem Anal 46:1–265

    PubMed  Google Scholar 

  29. Kuzmic P, Elrod KC, Cregar LM et al (2000) High-throughput screening of enzyme inhibitors: simultaneous determination of tight-binding inhibition constants and enzyme concentration. Anal Biochem 286:45–50

    Article  CAS  Google Scholar 

  30. Nguyen HH, Tompa P, Pauwels K (2019) Calpain purification through calpastatin and calcium: strategy and procedures. Methods Mol Biol 1929:233–244

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Odysseus grant G.0029.12 and the postdoctoral fellowship #1218713 from Research Foundation Flanders (FWO), the H2020 MSCA ITN FRAGNET (project 6758993) grant and K124670 and PD124598 grants from the Hungarian Scientific Research Fund (OTKA). We thank Wim Versées, Joris Messens, and Maria Tossounian for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Tompa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nguyen, H.H. et al. (2020). Targeting an Intrinsically Disordered Protein by Covalent Modification. In: Kragelund, B.B., Skriver, K. (eds) Intrinsically Disordered Proteins. Methods in Molecular Biology, vol 2141. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0524-0_43

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0524-0_43

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0523-3

  • Online ISBN: 978-1-0716-0524-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics