Skip to main content

Hemagglutinin Inhibitors are Potential Future Anti-Influenza Drugs for Mono- and Combination Therapies

  • Protocol
  • First Online:
Book cover Lectin Purification and Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2132))

Abstract

Infections by H1-H16 influenza A viruses require sufficient binding of viral hemagglutinins (HAs) to specific target receptors, glycoconjugates bearing sialyl sugar chains, on the host cell surface. Synthesized sialyl sugar chains targeting sialyl sugar-binding sites in HAs that are immutable as long as the virus does not switch to a different host species might therefore be highly effective candidate drugs for inhibition of the initial required step of virus entry. In this chapter, we describe the following aspects of updated sialyl sugar chains as influenza A virus HA inhibitors (HAIs): (1) mode of terminal sialyl-galactose linkage, (2) molecular length and structure of sialyl glycan receptors, (3) multivalent sialyl sugar chain dimension, (4) clustering of sialyl sugar chains on macromolecular scaffolds, and (5) enhancement of the stability of sialyl sugar chain HA inhibitors. We also discuss about the use of HAI-based combinations that should be considered for future influenza therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 239.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 29 September 2020

    The inadvertently published below contents have been corrected.

References

  1. Sriwilaijaroen N, Suzuki Y (2012) Molecular basis of the structure and function of H1 hemagglutinin of influenza virus. Proc Jpn Acad Ser B Phys Biol Sci 88:226–249

    CAS  PubMed  PubMed Central  Google Scholar 

  2. McAuley JL, Gilbertson BP, Trifkovic S et al (2019) Influenza virus neuraminidase structure and functions. Front Microbiol 10(39):1–13

    Google Scholar 

  3. NIID website (2019) Antiviral resistance surveillance in Japan (as of 21 May 2019) https://www.niid.go.jp/niid/en/influ-resist-e.html

  4. Sriwilaijaroen N, Magesh S, Imamura A et al (2016) A novel potent and highly specific inhibitor against influenza viral N1-N9 neuraminidases: insight into neuraminidase-inhibitor interactions. J Med Chem 59:4563–4577

    CAS  PubMed  Google Scholar 

  5. Takashita E, Kawakami C, Morita H et al (2018) Detection of influenza A(H3N2) viruses exhibiting reduced susceptibility to the novel cap-dependent endonuclease inhibitor baloxavir in Japan, December 2018. Euro Surveill 24(3):1–5

    Google Scholar 

  6. Guo H, Rabouw H, Slomp A et al (2018) Kinetic analysis of the influenza A virus HA/NA balance reveals contribution of NA to virus-receptor binding and NA-dependent rolling on receptor-containing surfaces. PLoS Pathog 14:e1007233

    PubMed  PubMed Central  Google Scholar 

  7. Suzuki Y (2005) Sialobiology of influenza-molecular mechanism of host range variation of influenza viruses. Biol Pharm Bull 28:399–408

    CAS  PubMed  Google Scholar 

  8. Stevens J, Blixt O, Paulson JC et al (2006) Glycan microarray technologies: tools to survey host specificity of influenza viruses. Nat Rev Microbiol 4:857–864

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Sriwilaijaroen N, Kondo S, Yagi H et al (2009) Analysis of N-glycans in embryonated chicken egg chorioallantoic and amniotic cells responsible for binding and adaptation of human and avian influenza viruses. Glycoconj J 26:433–443

    CAS  PubMed  Google Scholar 

  10. Watanabe Y, Ito T, Ibrahim MS et al (2015) A novel immunochromatographic system for easy-to-use detection of group 1 avian influenza viruses with acquired human-type receptor binding specificity. Biosens Bioelectron 65:211–219

    CAS  PubMed  Google Scholar 

  11. Matrosovich M, Herrler G, Klenk HD (2015) Sialic acid receptors of viruses. Top Curr Chem 367:1–28

    CAS  PubMed  Google Scholar 

  12. Shi J, Deng G, Kong H et al (2017) H7N9 virulent mutations detected in chicken in China pose an increased threat to humans. Cell Res 12:1409–1421

    Google Scholar 

  13. de Vries RP, Peng W, Grant OC et al (2017) Three mutations switch H7N9 influenza to human-type receptor specificity. PLoS Pathog 13:e1006390

    PubMed  PubMed Central  Google Scholar 

  14. Imai M, Watanabe T, Hatta M et al (2012) Experimental adaptation of an influenza H5 haemagglutinin confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature 486:420–428

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Ng PS, Böhm R, Hartley-Tassell LE et al (2014) Ferrets exclusively synthesize Neu5Ac and express naturally humanized influenza A virus receptors. Nat Commun 5:5750

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Velkov T (2013) The specificity of the influenza B virus hemagglutinin receptor binding pocket: what does it bind to? J Mol Recognit 26:439–449

    CAS  PubMed  Google Scholar 

  17. Sriwilaijaroen N, Suzuki Y (2014) Molecular basis of a pandemic of avian-type influenza virus. Methods Mol Biol 1200:447–480

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Walther T, Karamanska R, Chan RW et al (2013) Glycomic analysis of human respiratory tract tissues and correlation with influenza virus infection. PLoS Pathog 9:e1003223

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Sriwilaijaroen N, Nakakita S, Kondo S et al (2018) N-Glycan structures of human alveoli provide insight into influenza A virus infection and pathogenesis. FEBS J 285:1611–1634

    CAS  PubMed  Google Scholar 

  20. Peng W, de Vries RP, Grant OC et al (2017) Recent H3N2 viruses have evolved specificity for extended, branched human-type receptors, conferring potential for increased avidity. Cell Host Microbe 21:23–34

    CAS  PubMed  Google Scholar 

  21. Hidari KI, Murata T, Yoshida K et al (2008) Chemoenzymatic synthesis, characterization, and application of glycopolymers carrying lactosamine repeats as entry inhibitors against influenza virus infection. Glycobiology 18:779–788

    CAS  PubMed  Google Scholar 

  22. Weis W, Brown JH, Cusack S et al (1988) Structure of the influenza virus haemagglutinin complexed with its receptor, sialic acid. Nature 333:426–431

    CAS  PubMed  Google Scholar 

  23. Ohta T, Miura N, Fujitani N et al (2003) Glycotentacles: synthesis of cyclic glycopeptides, toward a tailored blocker of influenza virus hemagglutinin. Angew Chem Int Ed Engl 42:5186–5189

    CAS  PubMed  Google Scholar 

  24. Yamabe M, Kaihatsu K, Ebara Y (2018) Sialyllactose-modified three-way junction DNA as binding inhibitor of influenza virus hemagglutinin. Bioconjug Chem 29:1490–1494

    CAS  PubMed  Google Scholar 

  25. Hanson JE, Sauter NK, Skehel JJ et al (1992) Proton nuclear magnetic resonance studies of the binding of sialosides to intact influenza virus. Virology 189:525–533

    CAS  PubMed  Google Scholar 

  26. Tsuchida A, Kobayashi K, Matsubara N et al (1998) Simple synthesis of sialyllactose-carrying polystyrene and its binding with influenza virus. Glycoconj J 15:1047–1054

    CAS  PubMed  Google Scholar 

  27. Totani K, Kubota T, Kuroda T et al (2003) Chemoenzymatic synthesis and application of glycopolymers containing multivalent sialyloligosaccharides with a poly (L-glutamic acid) backbone for inhibition of infection by influenza viruses. Glycobiology 13:315–326

    CAS  PubMed  Google Scholar 

  28. Ogata M, Murata T, Murakami K et al (2007) Chemoenzymatic synthesis of artificial glycopolypeptides containing multivalent sialyloligosaccharides with a gamma-polyglutamic acid backbone and their effect on inhibition of infection by influenza viruses. Bioorg Med Chem 15:1383–1393

    CAS  PubMed  Google Scholar 

  29. Makimura Y, Watanabe S, Suzuki T et al (2006) Chemoenzymatic synthesis and application of a sialoglycopolymer with a chitosan backbone as a potent inhibitor of human influenza virus hemagglutination. Carbohydr Res 341:1803–1808

    CAS  PubMed  Google Scholar 

  30. Guo CT, Sun XL, Kanie O et al (2002) An O-glycoside of sialic acid derivative that inhibits both hemagglutinin and sialidase activities of influenza viruses. Glycobiology 12:183–190

    CAS  PubMed  Google Scholar 

  31. Guo CT, Wong CH, Kajimoto T et al (2002) Synthetic sialylphosphatidylethanolamine derivatives bind to human influenza A viruses and inhibit viral infection. Glycoconj J 15:1099–1108

    Google Scholar 

  32. Sun XL, Kanie Y, Guo CT et al (2000) Synthesis of C-3 modified sialylglycosides as selective inhibitors of influenza hemagglutinin and neuraminidase. Eur J Org Chem 2000:2643–2653

    Google Scholar 

  33. Oka H, Onaga T, Koyama T et al (2009) Syntheses and biological evaluations of carbosilane dendrimers uniformly functionalized with sialyl α(2-3) lactose moieties as inhibitors for human influenza viruses. Bioorg Med Chem 17:5465–5475

    CAS  PubMed  Google Scholar 

  34. Kamitakahara H, Suzuki T, Nishigori N et al (1998) A lysoganglioside/poly-L-glutamic acid conjugate as a picomolar inhibitor of influenza hemagglutinin. Angew Chem Int Ed Engl 37:1524–1528

    CAS  PubMed  Google Scholar 

  35. Sriwilaijaroen N, Suzuki Y (2014) A simple viral neuraminidase-based detection for high-throughput screening of viral hemagglutinin-host receptor specificity. Methods Mol Biol 1200:107–120

    CAS  PubMed  Google Scholar 

  36. Yang Y, Liu HP, Yu Q et al (2016) Multivalent S-sialoside protein conjugates block influenza hemagglutinin and neuraminidase. Carbohydr Res 435:68–75

    CAS  PubMed  Google Scholar 

  37. WHO website (2010) WHO guidelines for pharmacological management of pandemic influenza A(H1N1) 2009 and other influenza viruses. https://www.who.int/csr/resources/publications/swineflu/h1n1_guidelines_pharmaceutical_mngt.pdf

  38. CDC website (2018) Influenza antiviral medications: summary for clinicians. https://www.cdc.gov/flu/professionals/antivirals/summary-clinicians.htm

  39. Sriwilaijaroen N, Suzuki K, Takashita E et al (2015) 6SLN-lipo PGA specifically catches (coats) human influenza virus and synergizes neuraminidase-targeting drugs for human influenza therapeutic potential. J Antimicrob Chemother 70:2797–2809

    CAS  PubMed  Google Scholar 

  40. Lin Q, Li T, Chen Y et al (2018) Structural basis for the broad, antibody-mediated neutralization of H5N1 influenza virus. J Virol 92(17):e00547–e00518

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Ekiert DC, Friesen RH, Bhabha G et al (2011) A highly conserved neutralizing epitope on group 2 influenza A viruses. Science 333:843–850

    CAS  PubMed  PubMed Central  Google Scholar 

  42. van Dongen MJP, Kadam RU, Juraszek J et al (2019) A small-molecule fusion inhibitor of influenza virus is orally active in mice. Science 363(6431):eaar6221

    PubMed  PubMed Central  Google Scholar 

  43. Chen Q, Guo Y (2016) Influenza viral hemagglutinin peptide inhibits influenza viral entry by shielding the host receptor. ACS Infect Dis 2:187–193

    CAS  PubMed  Google Scholar 

  44. Lauster D, Glanz M, Bardua M et al (2017) A multivalent peptide-nanoparticle conjugates for influenza-virus inhibition. Angew Chem Int Ed Engl 56:5931–5936

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Zeng LY, Yang J, Liu S (2017) Investigational hemagglutinin-targeted influenza virus inhibitors. Expert Opin Investig Drugs 26:63–73

    CAS  PubMed  Google Scholar 

  46. Sriwilaijaroen N, Kadowaki A, Onishi Y et al (2011) Mumefural and related HMF derivatives from Japanese apricot fruit juice concentrate show multiple effects on pandemic influenza A (H1N1) virus. Food Chem 127:1–9

    CAS  Google Scholar 

  47. Sriwilaijaroen N, Fukumoto S, Kumagai K et al (2012) Antiviral effects of Psidium guajava Linn. (guava) tea on the growth of clinical isolated H1N1 viruses: its role in viral hemagglutination and neuraminidase inhibition. Antivir Res 94:139–146

    CAS  PubMed  Google Scholar 

  48. Kido H, Okumura Y, Takahashi E et al (2009) Host envelope glycoprotein processing proteases are indispensable for entry into human cells by seasonal and highly pathogenic avian influenza viruses. J Mol Genet Med 3:167–175

    CAS  Google Scholar 

  49. Wua CY, Lina CW, Tsaia TI et al (2017) Influenza a surface glycosylation and vaccine design. Proc Natl Acad Sci U S A 114:280–285

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nongluk Sriwilaijaroen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sriwilaijaroen, N., Suzuki, Y. (2020). Hemagglutinin Inhibitors are Potential Future Anti-Influenza Drugs for Mono- and Combination Therapies. In: Hirabayashi, J. (eds) Lectin Purification and Analysis. Methods in Molecular Biology, vol 2132. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0430-4_48

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0430-4_48

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0429-8

  • Online ISBN: 978-1-0716-0430-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics