Skip to main content

Characterizing MHC-I Genotype Predictive Power for Oncogenic Mutation Probability in Cancer Patients

  • Protocol
  • First Online:
Immunoinformatics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2131))

Abstract

MHC class I proteins present intracellular peptides on the cell’s surface, enabling the immune system to recognize tumor-specific neoantigens of early neoplastic cells and eliminate them before the tumor develops further. However, variability in peptide-MHC-I affinity results in variable presentation of oncogenic peptides, leading to variable likelihood of immune evasion across both individuals and mutations. Since the major determinant of peptide-MHC-I affinity in patients is individual MHC-I genotype, we developed a residue-centric presentation score taking both mutated residues and MHC-I genotype into account and hypothesized that high scores (which correspond to poor presentation) would correlate to high mutation frequencies within tumors. We applied our scoring system to 9176 tumor samples from TCGA across 1018 recurrent mutations and found that, indeed, presentation scores predicted mutation probability. These findings open the door to more personalized treatment plans based on simple genotyping. Here, we outline the computational tools and statistical methods used to arrive at this conclusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kaplan DH et al (1998) Demonstration of an interferon gamma-dependent tumor surveillance system in immunocompetent mice. Proc Natl Acad Sci U S A 95:7556–7561. https://doi.org/10.1073/pnas.95.13.7556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Shankaran V et al (2001) IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410:1107–1111. https://doi.org/10.1038/35074122

    Article  CAS  PubMed  Google Scholar 

  3. Sidney J, Peters B, Frahm N, Brander C, Sette A (2008) HLA class I supertypes: a revised and updated classification. BMC Immunol 9:1. https://doi.org/10.1186/1471-2172-9-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zitvogel L, Tesniere A, Kroemer G (2006) Cancer despite immunosurveillance: immunoselection and immunosubversion. Nat Rev Immunol 6:715–727. https://doi.org/10.1038/nri1936

    Article  CAS  PubMed  Google Scholar 

  5. Leach DR, Krummel MF, Allison JP (1996) Enhancement of antitumor immunity by CTLA-4 blockade. Science 271:1734–1736. https://doi.org/10.1126/science.271.5256.1734

    Article  CAS  PubMed  Google Scholar 

  6. Marty R et al (2017) MHC-I genotype restricts the oncogenic mutational landscape. Cell 171:1272–1283. e1215. https://doi.org/10.1016/j.cell.2017.09.050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shukla SA et al (2015) Comprehensive analysis of cancer-associated somatic mutations in class I HLA genes. Nat Biotechnol 33:1152–1158. https://doi.org/10.1038/nbt.3344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Szolek A et al (2014) OptiType: precision HLA typing from next-generation sequencing data. Bioinformatics 30:3310–3316. https://doi.org/10.1093/bioinformatics/btu548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jia X et al (2013) Imputing amino acid polymorphisms in human leukocyte antigens. PLoS One 8:e64683. https://doi.org/10.1371/journal.pone.0064683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Davoli T et al (2013) Cumulative haploinsufficiency and triplosensitivity drive aneuploidy patterns and shape the cancer genome. Cell 155:948–962. https://doi.org/10.1016/j.cell.2013.10.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nielsen M, Andreatta M (2016) NetMHCpan-3.0; improved prediction of binding to MHC class I molecules integrating information from multiple receptor and peptide length datasets. Genome Med 8:33. https://doi.org/10.1186/s13073-016-0288-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kesmir C, Nussbaum AK, Schild H, Detours V, Brunak S (2002) Prediction of proteasome cleavage motifs by neural networks. Protein Eng 15:287–296

    Article  CAS  PubMed  Google Scholar 

  13. Abelin JG et al (2017) Mass spectrometry profiling of HLA-associated Peptidomes in mono-allelic cells enables more accurate epitope prediction. Immunity 46:315–326. https://doi.org/10.1016/j.immuni.2017.02.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bassani-Sternberg M, Pletscher-Frankild S, Jensen LJ, Mann M (2015) Mass spectrometry of human leukocyte antigen class I peptidomes reveals strong effects of protein abundance and turnover on antigen presentation. Mol Cell Proteomics 14:658–673. https://doi.org/10.1074/mcp.M114.042812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wood SN (2011) Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J R Stat Soc Series B Stat Methodol 73:3–36. https://doi.org/10.1111/j.1467-9868.2010.00749.x

    Article  Google Scholar 

  16. Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67(1):1–48 https://doi.org/10.18637/jss.v067.i01

Download references

Acknowledgments

This work has been supported by NIH K99/R00CA191152 grant to J. F-B and funded in part through the NIH/NCI Cancer Center Support Grant P30 CA006927. David Rossell was partially funded by the grant RyC-2015-18544, Plan Estatal PGC2018-101643-B-I00, and Ayudas Fundacion BBVA a equipos de investigacion cientifica 2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan Font-Burgada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Beauchemin, L., Slifker, M., Rossell, D., Font-Burgada, J. (2020). Characterizing MHC-I Genotype Predictive Power for Oncogenic Mutation Probability in Cancer Patients. In: Tomar, N. (eds) Immunoinformatics. Methods in Molecular Biology, vol 2131. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0389-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0389-5_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0388-8

  • Online ISBN: 978-1-0716-0389-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics