Skip to main content

An Immunoinformatics Approach in Design of Synthetic Peptide Vaccine Against Influenza Virus

  • Protocol
  • First Online:
Immunoinformatics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2131))

Abstract

Peptide-based vaccines are an appealing strategy which involves usage of short synthetic peptides to engineer a highly targeted immune response. These short synthetic peptides contain potential T- and B-cell epitopes. Experimental approaches in identifying these epitopes are time-consuming and expensive; hence immunoinformatics approach came into picture. Immuninformatics approach involves epitope prediction tools, molecular docking, and population coverage analysis in design of desired immunogenic peptides. In order to overcome the antigenic variation of viruses, conserved regions are targeted to find the potential epitopes. The present chapter demonstrates the use of immunoinformatics approach to select potential peptide containing multiple T- (CD8+ and CD4+) and B-cell epitopes from Avian H3N2 M1 Protein. Further, molecular docking (to analyse HLA-peptide interaction) and population coverage analysis have been used to verify the potential of peptide to be presented by polymorphic HLA molecules. In silico approach of epitope prediction has proven to be successful methodology in screening the putative epitopes among numerous possible vaccine targets in a given protein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tong S, Zhu X, Li Y et al (2013) New World Bats Harbor diverse influenza a viruses. PLoS Pathog 9(10):e1003657

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Purcell AW, McCluskey J, Rossjohn J (2007) More than one reason to rethink the use of peptides in vaccine design. Nat Rev Drug Discov 6(5):404–414

    Article  CAS  PubMed  Google Scholar 

  3. Slingluff CL (2011) The present and future of peptide vaccines for Cancer. Cancer J 17(5):343–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Vita R, Overton JA, Greenbaum JA et al (2008) The immune epitope database (IEDB) 3.0. Nucleic Acids Res 43(D1):D405–D412

    Article  CAS  Google Scholar 

  5. Backert L, Kohlbacher O (2015) Immunoinformatics and epitope prediction in the age of genomic medicine. Genome Med 7(1):119

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Bao Y, Bolotov P, Dernovoy D et al (2008) The influenza virus resource at the national center for biotechnology information. J Virol 82(2):596–601

    Article  CAS  PubMed  Google Scholar 

  7. Zhang Y, Aevermann BD, Anderson TK et al (2017) Influenza research database: an integrated bioinformatics resource for influenza virus research. Nucleic Acids Res 45(D1):D466–D474

    Article  CAS  PubMed  Google Scholar 

  8. Miotto O, Heiny AT, Tan TW et al (2007) Identification of human-to-human transmissibility factors in PB2 proteins of influenza a by large-scale mutual information analysis. BMC Bioinformatics 9(1):1–18

    Google Scholar 

  9. Lohia N, Baranwal M (2014) Conserved peptides containing overlapping CD4+ and CD8+ T-cell epitopes in the H1N1 influenza virus: an immunoinformatics approach. Viral Immunol 27(5):225–234

    Article  CAS  PubMed  Google Scholar 

  10. Agallou M, Athanasiou E, Koutsoni O et al (2014) Experimental validation of multi-epitope peptides including promising MHC class I- and II-restricted epitopes of four known Leishmania infantum proteins. Front Immunol 5:1–16

    Article  CAS  Google Scholar 

  11. Vijayan R, Subbarao N, Manoharan N (2015) In silico analysis of conformational changes induced by normal and mutation of macrophage infectivity potentiator catalytic residues and its interactions with Rapamycin. Interdiscip Sci 7(3):326–333

    Article  CAS  PubMed  Google Scholar 

  12. Patronov A, Dimitrov I, Flower DR et al (2011) Peptide binding prediction for the human class II MHC allele HLA-DP2: a molecular docking approach. BMC Struct Biol 11:32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Thévenet P, Shen Y, Maupetit J et al (2012) PEP-FOLD: an updated de novo structure prediction server for both linear and disulfide bonded cyclic peptides. Nucleic Acids Res 40(W1):288–293

    Article  CAS  Google Scholar 

  14. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function efficient optimization and multithreading. J Comput Chem 31(2):455

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Lohia N, Baranwal M (2018) Highly conserved hemagglutinin peptides of H1N1 influenza virus elicit immune response. 3 Biotech 8(12):492

    Article  PubMed  PubMed Central  Google Scholar 

  16. Jain S, Baranwal M (2019) Computational analysis in designing T cell epitopes enriched peptides of Ebola glycoprotein exhibiting strong binding interaction with HLA molecules. J Theor Biol 465:34–44

    Article  CAS  PubMed  Google Scholar 

  17. Bui HH, Sidney J, Dinh K et al (2006) Predicting population coverage of T-cell epitope-based diagnostics and vaccines. BMC Bioinformatics 7:1–5

    Article  CAS  Google Scholar 

  18. González-Galarza FF, Takeshita LYC, Santos EJM et al (2015) Allele frequency net 2015 update: new features for HLA epitopes, KIR and disease and HLA adverse drug reaction associations. Nucleic Acids Res 43(D1):D784–D788

    Article  PubMed  CAS  Google Scholar 

  19. Lohia N, Baranwal M (2015) Identification of conserved peptides comprising multiple T cell epitopes of matrix 1 protein in H1N1 influenza virus. Viral Immunol 28(10):570–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Doytchinova IA, Guan P, Flower DR (2006) EpiJen: a server for multistep T cell epitope prediction. BMC Bioinformatics 7:1–11

    Article  CAS  Google Scholar 

  21. Jacob L, Vert JP (2008) Efficient peptide-MHC-I binding prediction for alleles with few known binders. Bioinformatics24(3):358–366

    Google Scholar 

  22. MHC2PRED: http://crdd.osdd.net/raghava/mhc2pred/info.html

  23. Guan P, Doytchinova IA, Zygouri C (2003) MHCPred: a server for quantitative prediction of peptide-MHC binding. Nucleic Acids Res 31(13):3621–3624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bhasin M, Raghava GPS (2003) Prediction of promiscuous and high-affinity mutated MHC binders. Hybrid Hybridomics 22(4):229–234

    Article  CAS  PubMed  Google Scholar 

  25. Larsen MV, Lundegaard C, Lamberth K et al (2007) Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC Bioinformatics 8:1–12

    Article  CAS  Google Scholar 

  26. Stranzl T, Larsen MV, Lundegaard C et al (2010) NetCTLpan: pan-specific MHC class I pathway epitope predictions. Immunogenetics 62(6):357–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jurtz V, Paul S, Andreatta M et al (2017) NetMHCpan-4.0: improved peptide–MHC class i interaction predictions integrating eluted ligand and peptide binding affinity data. J Immunol 199(9):3360–3368

    Article  CAS  PubMed  Google Scholar 

  28. Andreatta M, Nielsen M (2015) Gapped sequence alignment using artificial neural networks: application to the MHC class i system. Bioinformatics 32(4):511–517

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Bhasin M, Raghava GPS (2007) A hybrid approach for predicting promiscuous MHC class I restricted T cell epitopes. J Biosci 32(1):31–42

    Article  CAS  PubMed  Google Scholar 

  30. Singh H, Raghava GPS (2002) ProPred: prediction of HLA-DR binding sites. Bioinformatics 17(12):1236–1237

    Article  Google Scholar 

  31. Singh H, Raghava GPS (2003) ProPred1: prediction of promiscuous MHC class-I binding sites. Bioinformatics 19(8):1009–1014

    Article  CAS  PubMed  Google Scholar 

  32. Reche PA, Reinherz EL (2007) Prediction of peptide-MHC binding using profiles. Methods Mol Bio 409:185–200

    Article  CAS  Google Scholar 

  33. Liu W, Wan J, Meng X et al (2007) In silico prediction of peptide-MHC binding affinity using SVRMHC. Methods Mol Biol (Clifton, NJ) 409:283–291

    Article  CAS  Google Scholar 

  34. Rammensee HG, Bachmann J, Emmerich NPN et al (1999) SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50(3–4):213–219

    Article  CAS  PubMed  Google Scholar 

  35. Jespersen MC, Peters B, Nielsen M et al (2017) BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Res 45(W1):W24–W29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ansari H, Raghava GP (2010) Identification of conformational B-cell epitopes in an antigen from its primary sequence. Immunome Res 6(1):6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Saha S, Raghava GP (2006) Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins 65(1):40–48

    Article  CAS  PubMed  Google Scholar 

  38. Gupta S, Ansari HR, Gautam A et al (2013) Identification of B-cell epitopes in an antigen for inducing specific class of antibodies. Biol Direct 8(1):27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Chen J, Liu H, Yang J et al (2007) Prediction of linear B-cell epitopes using amino acid pair antigenicity scale. Amino Acids 33(3):423–428

    Article  CAS  PubMed  Google Scholar 

  40. Yao B, Zhang L, Liang S et al (2012) SVMTriP: a method to predict antigenic epitopes using support vector machine to integrate tri-peptide similarity and propensity. PLoS One 7(9):e45152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Saha S, Raghava GPS (2004) BcePred: prediction of continuous B-cell epitopes in antigenic sequences using Physico-chemical properties. In: Nicosia G, Cutello V, Bentley PJ, Timmis J (eds) Artificial immune systems. ICARIS 2004. Lecture notes in computer science, vol 3239. Springer, Berlin, Heidelberg

    Google Scholar 

  42. Gao J, Faraggi E, Zhou Y et al (2012) BEST: improved prediction of B-cell epitopes from antigen sequences. PLoS One 7(6):e40104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rubinstein ND, Mayrose I, Martz E et al (2009) Epitopia: a web-server for predicting B-cell epitopes. BMC Bioinformatics 10(1):287

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Mayrose I, Penn O, Erez E et al (2007) Pepitope: epitope mapping from affinity-selected peptides. Bioinformatics 23(23):3244–3246

    Article  CAS  PubMed  Google Scholar 

  45. Manavalan B, Govindaraj RG, Shin TH et al (2018) iBCE-EL: a new ensemble learning framework for improved linear B-cell epitope prediction. Front Immunol 9:1695

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Sweredoski MJ, Baldi P (2009) COBEpro: a novel system for predicting continuous B-cell epitopes. Protein Eng Des Sel 22(3):113–120

    Article  CAS  PubMed  Google Scholar 

  47. Singh H, Ansari HR, Raghava GP (2013) Improved method for linear b-cell epitope prediction using antigen’s primary sequence. PLoS One 8(5):e62216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lohia, N., Baranwal, M. (2020). An Immunoinformatics Approach in Design of Synthetic Peptide Vaccine Against Influenza Virus. In: Tomar, N. (eds) Immunoinformatics. Methods in Molecular Biology, vol 2131. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0389-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0389-5_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0388-8

  • Online ISBN: 978-1-0716-0389-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics