Skip to main content

Circadian Phosphorylation of CLOCK and BMAL1

  • Protocol
  • First Online:
Circadian Clocks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2130))

Abstract

Daily rhythms of behaviors and physiologies are driven by transcriptional–translational negative feedback loops of clock genes and encoded clock proteins (Bass and Takahashi Science 330:1349–1354, 2010; Brown et al. Dev Cell 22:477–487, 2012). Posttranslational modifications of clock proteins, including protein phosphorylation, play an essential role for normal oscillation of the circadian clock through regulation of their activities, stabilities, interactions, and intracellular localization (Gallego and Virshup Nat Rev Mol Cell Biol 8:139–148, 2007; Hirano et al. Nat Struct Mol Biol 23:1053–1060, 2016). In this chapter, we describe detailed methods for quantitative analysis of phosphorylation levels of clock proteins, particularly focusing on circadian phosphorylation of CLOCK, BMAL1, and their complex (Yoshitane et al. Mol Cell Biol 29:3675–3686, 2009).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bass J, Takahashi JS (2010) Circadian integration of metabolism and energetics. Science 330:1349–1354

    Article  CAS  Google Scholar 

  2. Brown SA, Kowalska E, Dallmann R (2012) (Re)inventing the circadian feedback loop. Dev Cell 22:477–487

    Article  CAS  Google Scholar 

  3. Toh K, Jones C, He Y, Eide E, Hinz W, Virshup D, Ptácek L, Fu Y (2001) An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science 291:1040–1043

    Article  CAS  Google Scholar 

  4. Xu Y, Padiath Q, Shapiro R, Jones C, Wu S, Saigoh N, Saigoh K, Ptácek L, Fu Y (2005) Functional consequences of a CKIdelta mutation causing familial advanced sleep phase syndrome. Nature 434:640–644

    Article  CAS  Google Scholar 

  5. Gallego M, Virshup DM (2007) Post-translational modifications regulate the ticking of the circadian clock. Nat Rev Mol Cell Biol 8:139–148

    Article  CAS  Google Scholar 

  6. Hirano A, Fu YH, Ptáček LJ (2016) The intricate dance of post-translational modifications in the rhythm of life. Nat Struct Mol Biol 23:1053–1060

    Article  CAS  Google Scholar 

  7. Sanada K, Harada Y, Sakai M, Todo T, Fukada Y (2004) Serine phosphorylation of mCRY1 and mCRY2 by mitogen-activated protein kinase. Genes Cells 9:697–708

    Article  CAS  Google Scholar 

  8. Harada Y, Sakai M, Kurabayashi N, Hirota T, Fukada Y (2005) Ser-557-phosphorylated mCRY2 is degraded upon synergistic phosphorylation by glycogen synthase kinase-3 beta. J Biol Chem 280:31714–31721

    Article  CAS  Google Scholar 

  9. Kurabayashi N, Hirota T, Harada Y, Sakai M, Fukada Y (2006) Phosphorylation of mCRY2 at Ser557 in the hypothalamic suprachiasmatic nucleus of the mouse. Chronobiol Int 23:129–134

    Article  CAS  Google Scholar 

  10. Kurabayashi N, Hirota T, Sakai M, Sanada K, Fukada Y (2010) DYRK1A and GSK-3{beta}: a dual kinase mechanism directing proteasomal degradation of CRY2 for circadian timekeeping. Mol Cell Biol 30(7):1757–1768

    Article  CAS  Google Scholar 

  11. Hirano A, Kurabayashi N, Nakagawa T, Shioi G, Todo T, Hirota T, Fukada Y (2014) In vivo role of phosphorylation of cryptochrome 2 in the mouse circadian clock. Mol Cell Biol 34:4464–4473

    Article  Google Scholar 

  12. Yoshitane H, Takao T, Satomi Y, Du N, Okano T, Fukada Y (2009) Roles of CLOCK phosphorylation in suppression of E-box-dependent transcription. Mol Cell Biol 29:3675–3686

    Article  CAS  Google Scholar 

  13. Zhao W, Malinin N, Yang F, Staknis D, Gekakis N, Maier B, Reischl S, Kramer A, Weitz C (2007) CIPC is a mammalian circadian clock protein without invertebrate homologues. Nat Cell Biol 9:268–275

    Article  CAS  Google Scholar 

  14. Vitaterna M, King D, Chang A, Kornhauser J, Lowrey P, McDonald J, Dove W, Pinto L, Turek F, Takahashi J (1994) Mutagenesis and mapping of a mouse gene, clock, essential for circadian behavior. Science 264:719–725

    Article  CAS  Google Scholar 

  15. King D, Zhao Y, Sangoram A, Wilsbacher L, Tanaka M, Antoch M, Steeves T, Vitaterna M, Kornhauser J, Lowrey P et al (1997) Positional cloning of the mouse circadian clock gene. Cell 89:641–653

    Article  CAS  Google Scholar 

  16. Antoch M, Song E, Chang A, Vitaterna M, Zhao Y, Wilsbacher L, Sangoram A, King D, Pinto L, Takahashi J (1997) Functional identification of the mouse circadian clock gene by transgenic BAC rescue. Cell 89:655–667

    Article  CAS  Google Scholar 

  17. Huang N, Chelliah Y, Shan Y, Taylor CA, Yoo SH, Partch C, Green CB, Zhang H, Takahashi JS (2012) Crystal structure of the heterodimeric CLOCK:BMAL1 transcriptional activator complex. Science 337:189–194

    Article  CAS  Google Scholar 

  18. Koike N, Yoo SH, Huang HC, Kumar V, Lee C, Kim TK, Takahashi JS (2012) Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science 338(6105):349–354

    Article  CAS  Google Scholar 

  19. Yoshitane H, Ozaki H, Terajima H, Du NH, Suzuki Y, Fujimori T, Kosaka N, Shimba S, Sugano S, Takagi T, Iwasaki W, Fukada Y (2014) CLOCK-controlled polyphonic regulation of circadian rhythms through canonical and noncanonical E-boxes. Mol Cell Biol 34:1776–1787

    Article  Google Scholar 

  20. Terajima H, Yoshitane H, Ozaki H, Suzuki Y, Shimba S, Kuroda S, Iwasaki W, Fukada Y (2017) ADARB1 catalyzes circadian A-to-I editing and regulates RNA rhythm. Nat Genet 49:146–151

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by Grants-in-Aid for Scientific Research from MEXT, Japan (to H.Y. and Y.F.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshitaka Fukada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yoshitane, H., Fukada, Y. (2021). Circadian Phosphorylation of CLOCK and BMAL1. In: Brown, S.A. (eds) Circadian Clocks. Methods in Molecular Biology, vol 2130. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0381-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0381-9_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0380-2

  • Online ISBN: 978-1-0716-0381-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics