Skip to main content

Choice of Explant for Plant Genetic Transformation

  • Protocol
  • First Online:
Biolistic DNA Delivery in Plants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2124))

Abstract

Particle bombardment or biolistic transformation is an efficient, versatile method. This method does not need any vector for the gene transfer and is not dependent on the cell type, species, and genotype. The success of any transformation technique depends on the starting experimental materials or the explants. Here, we describe the factors that have influenced the choice of explants in biolistic transformation. Many general factors in the selection of explants in the development of transgenic plants are presented here. Therefore, this chapter provides extensive guidelines regarding the choice of explants for researchers working on various plant genetic transformation techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Potrykus I (1991) Gene transfer to plants: assessment of published approaches and results. Annu Rev Plant Physiol Plant Mol Biol 42:205–225

    Article  CAS  Google Scholar 

  2. Potrykus I (1990) Gene transfer to plants: assessments and perspectives. Physiol Plant 79:125–134

    Article  CAS  Google Scholar 

  3. Wang ZY, Ge Y (2006) Recent advances in genetic transformation of forage and turf grasses. In Vitro Cell Dev Biol Plant 42:1–18

    Article  CAS  Google Scholar 

  4. Sanford JC (1988) The biolistic process. Trends Biotechnol 6:299–302

    Article  CAS  Google Scholar 

  5. Altpeter F, Baisakh N, Beachy R, Bock R, Capell T, Christou P, Daniell H, Datta K, Datta S, Dix PJ, Fauquet C, Huang N, Kohli A, Mooibroek H, Nicholson L, Thanh TN, Nugent G, Raemakers K, Romano A, Somers DA, Stoger E, Taylor N, Visser R, Fauquet C (2005) Particle bombardment and the genetic enhancement of crops: myths and realities. Mol Breed 15:305–327

    Article  Google Scholar 

  6. Yadava P, Abhishek A, Singh R et al (2017) Advances in maize transformation technologies and development of transgenic maize. Front Plant Sci 7:1949

    Article  PubMed  PubMed Central  Google Scholar 

  7. Pereira LF, Erickson L (1995) Stable transformation of alfalfa (Medicago sotiva L.) by particle bombardment. Plant Cell Rep 14:290–293

    Article  CAS  PubMed  Google Scholar 

  8. Sagi L, Panis B, Remy S, Schoofs H, Smet KD, Swennen R, Cammue BPA (1995) Genetic transformation of banana and plantain (Musa spp.) via particle bombardment. Bio/Technology 13:481–485

    CAS  Google Scholar 

  9. Liu J, Gao P, Sun X, Zhang J, Sun P, Wang J, Jia C, Zhang J, Hu W, Xu B, Jin Z (2017) Efficient regeneration and genetic transformation platform applicable to five Musa varieties. Electron J Biotechnol 25:33–38

    Article  CAS  Google Scholar 

  10. Jahne A, Becker D, Brettschneider R, Lörz H (1994) Regeneration of transgenic, microspore-derived, fertile barley. Theor Appl Genet 89:525–533

    Article  CAS  PubMed  Google Scholar 

  11. Ritala A, Aspegren K, Kurtén U, Salmenkallio-Marttila M, Mannonen L, Hannus R, Kauppinen V, Teeri TH, Enari TM (1994) Fertile transgenic barley by particle bombardment of immature embryos. Plant Mot Biol 24:317–325

    Article  CAS  Google Scholar 

  12. McCabe DE, Martinell BJ, John ME (1998) Genetic transformation of cotton through particle bombardment. In: YPS B (ed) Cotton. Biotechnology in Agriculture and Forestry, vol 42. Springer, Berlin

    Google Scholar 

  13. Prakash SN, Prasad V, Chidambram TP, Cherian S, Jayaprakash TL, Dasgupta S, Wang Q, Mann MT, Spencer TM, Boddupalli RS (2008) Effect of promoter driving selectable marker on corn transformation. Transgenic Res 17:695–704

    Article  PubMed  CAS  Google Scholar 

  14. Bhatnagar S, Kapur A, Khurana P (2002) Evaluation of parameters for high efficiency gene transfer via particle bombardment in Indian mulberry. Ind J Exp Biol 40:1387–1392

    CAS  Google Scholar 

  15. Brar GS, Cohen BA, Vick CL, Johnson GW (1994) Recovery of transgenic peanut (Arachis hypogaea L.) plants from elite cultivars utilizing ACCL technology. Plant J 5:745–753

    Article  Google Scholar 

  16. Romano A, Raemakers K, Visser R, Mooibroek H (2001) Transformation of potato (Solanum tuberosum) using particle bombardment. Plant Cell Rep 20:198–204

    Article  CAS  Google Scholar 

  17. Romano A, van der Plas LHW, Witholt B Eggink G, Mooibroek H (2005) Expression of poly-3-(R)-hydroxyalkanoate (PHA) polymerase and acyl-CoA-transacylase in plastids of transgenic potato leads to the synthesis of a hydrophobic polymer, presumably medium-chain-length PHAs. Planta 220:45–464

    Article  CAS  Google Scholar 

  18. Datta K, Tu J, Oliva N, Ona I, Velazhahan R, Mew TW, Muthukrishnan S, Datta SK (2001) Enhanced resistance to sheath blight by constitutive expression of infection-related rice chitinase in transgenic elite indica rice cultivars. Plant Sci 60:405–414

    Article  Google Scholar 

  19. Tu J, Datta K, Alam MF, Fan YL, Kush GS, Datta SK (1998) Expression and function of a hybrid Bt toxin gene in transgenic rice conferring resistance to insect pest. Plant Biotechnol 15:195–203

    Article  CAS  Google Scholar 

  20. Tu J, Ona I, Zhang QF, Mew TW, Khush GS, Datta SK (1998) Transgenic rice veraity IR72 with Xa21 is resistant to bacterial blight. Theor Appl Genet 97:31–36

    Article  CAS  Google Scholar 

  21. Baisakh N, Datta K, Oliva N, Ona I, Rao GJN, Mew TW, Datta SK (2001) Rapid development of homozygous transgenic rice using anther culture harboring rice chitinase gene for enhanced sheath blight resistance. Plant Biotechnol 18:101–108

    Article  CAS  Google Scholar 

  22. Casas AM, Kononowicz AK, Zehr UB, Tomes DT, Axtell JD, Butler LG, Bressan RA, Hasegawa PM (1993) Transgenic sorghum plants via microprojectile bombardment. Proc Natl Acad Sci U S A 90:11212–11216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. McCabe DE, Swain WF, Martinell BJ, Christou P (1988) Stable transformation of soybean (Glycine max L.) by particle acceleration. Bio/Technology 6:923–926

    Google Scholar 

  24. Klein TM, Harper EC, Svab Z, Sanford JC, Fromm ME, Maliga P (1988) Stable genetic transformation or intact Nicotiana cells by the particle bombardment process. Proc Natl Acad Sci U S A 85:8502–8505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ruma D, Dhaliwal MS, Kaur A, Gosal SS (2009) Transformation of tomato using biolistic gun for transient expression of the ß-glucuronidase gene. Indian J Biotechnol 8:363–369

    CAS  Google Scholar 

  26. Suratman F, Huyop F, Wagiran A, Rahmat Z, Ghazali H, Parveez GKA (2010) Biolistic transformation of Citrullus vulgaris Schrad (watermelon). Biotechnology 9:119–130

    Article  CAS  Google Scholar 

  27. Pastori GM, Wilkinson MD, Steele SH, Sparks CA, Jones HD, Parry MAJ (2001) Age-dependent transformation frequency in elite wheat varieties. J Exp Bot 52:857–863

    Article  CAS  PubMed  Google Scholar 

  28. Vasil V, Castillo AM, Fromm ME, Vasil IK (1992) Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Bio/Technology 10:667–674

    CAS  Google Scholar 

  29. Davis ME, Lineberger RD, Miller AR (1991) Effects of tomato cultivar, leaf age, and bacterial strain on transformation by Agrobacterium tumefaciens. Plant Cell Tissue Organ Cult 24:115–121

    Article  Google Scholar 

  30. Han X, Han B (2016) Leaf age promotes Agrobacterium-mediated transformation of hybrid poplar Populus Davidiana Dode × P. Bollena Lauche International Conference on Biomedical and Biological Engineering. https://doi.org/10.2991/bbe-16.2016.68

  31. Graves AE, Goldman SL, Banks SW, Graves AC (1988) Scanning electron microscope studies of Agrobacterium tumefaciens attachment to Zea mays, Gladiolus sp., and Triticum aestivum. J Bactriol 170:2395–2400

    Article  CAS  Google Scholar 

  32. Verma A, Nain V, Kumari C et al (2008) Tissue specific response of Agrobacterium tumefaciens attachment to Sorghum bicolor (L) Moench. Physiol Mol Biol Plants 14:307–313

    Article  CAS  PubMed  Google Scholar 

  33. Hu Z, Wu Y-R, Li W et al (2006) Factors affecting Agrobacterium tumefaciens-mediated genetic transformation of Lycium barbarum L. In Vitro Cell Dev Biol Plant 42:461–466

    Article  CAS  Google Scholar 

  34. Villemont E, Dubois F, Sangwan RS et al (1997) Role of the host cell cycle in the Agrobacterium-mediated transformation of Petunia: evidence of an S-phase control mechanism for T-DNA transfer. Planta 201:160–172

    Article  CAS  Google Scholar 

  35. Moore GA, Jacono CC, Neidigh JL et al (1992) Agrobacterium-mediated transformation of Citrus stem segments and regeneration of transgenic plants. Plant Cell Rep 11:238–242

    CAS  PubMed  Google Scholar 

  36. Pena L, Cervera M, Juarez J et al (1997) Genetic transformation of lime (Citrus aurantifolia Swing.): factors affecting transformation and regeneration. Plant Cell Rep 16:731–737

    Article  CAS  PubMed  Google Scholar 

  37. Bond JE, Roose ML (1998) Agrobacterium-mediated transformation of the commercially important citrus cultivar Washington navel orange. Plant Cell Rep 18:229–234

    Article  CAS  PubMed  Google Scholar 

  38. Kaneyoshi J, Kobayashi S, Nakamura Y et al (1994) A simple and efficient gene transfer system of trifoliate orange (Poncirus trifoliata L. Raf.). Plant Cell Rep 13:541–545

    CAS  Google Scholar 

  39. Cao S, Masilamany P, Li W et al (2014) Agrobacterium tumefaciens-mediated transformation of corn (Zea mays L.) multiple shoots. Biotechnol Biotechnol Equip 28:208–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jadhav M, Jadhav A, Pawar B, Kale A, Kute N (2015) Agrobacterium-mediated genetic transformation of brinjal with cry1F gene for resistance against shoot and fruit borer. J Crop Improv 29:518–527

    Article  CAS  Google Scholar 

  41. Sanford JC, Smith FD, Russell JA (1993) Optimizing the biolistic process for different biological applications. Methods Enzymol 217:483–509

    Article  CAS  PubMed  Google Scholar 

  42. Sanghera GS, Gill MS, Gosal SS (2010) Optimization of shoot tip-based in vitro plant regeneration in cotton (Gossypium spp.). Int J Dev Biol 4:26–30

    Google Scholar 

  43. Mazumdar P, Basu A, Paul A, Mahanta C, Sahoo L (2010) Age and orientation of the cotyledonary leaf explants determine the efficiency of de novo plant regeneration and Agrobacterium tumefaciens mediated transformation in Jatropha curcas L. S Afr J Bot 76:337–344

    Article  Google Scholar 

  44. Udayakumar R, Kasthurirengan S, Mariashibu TS, Rayan JJS, Ganapathi A, Kim SC, Kim JJ, Choi CW (2014) Agrobacterium-mediated genetic transformation of Withania somnifera using nodal explants. Acta Physiol Plant 36:1969–1980

    Article  CAS  Google Scholar 

  45. Liu Y, Tong X, Hui W, Liu T, Chen X, Li J, Zhuang C, Yang Y, Liu Z (2015) Efficient culture protocol for plant regeneration from petiole explants of physiologically mature trees of Jatropha curcas L. Biotechnol Biotechnol Equip 29:479–488

    Article  CAS  Google Scholar 

  46. Hoque ME, Mansfield JW (2004) Effect of genotype and explant age on callus induction and subsequent plant regeneration from root-derived callus of Indica rice genotypes. Plant Cell Tissue Organ Cult 78:217–223

    Article  CAS  Google Scholar 

  47. Thorpe TA (2000) History of plant cell culture. In: Smith RH (ed) Plant tissue culture: techniques and experiments, 2nd edn. Academic, Cambridge, MA, pp 1–32

    Google Scholar 

  48. Fernandes E, Priolii A, Scapimi C, Schusterii I, Serra Negra Vieiraii E, Teixeira DO, Amaral Júnior A III, Moterlei L (2008) Somatic embryogenesis from immature embryos in maize genotypes. Cienc Rural 38:2604–2607

    Article  Google Scholar 

  49. Prakash DP, Deepali BS, Ramachandra YL, Anand L, Hanur VS (2012) Effect of age and size of hypocotyl explant on in vitro shoot regeneration in eggplant. J Hortl Sci 7:203–205

    Google Scholar 

  50. Zhang Y, Iaffaldano BJ, Xie W et al (2015) Rapid and hormone-free Agrobacterium rhizogenes-mediated transformation in rubber producing dandelions Taraxacum kok-saghyz and T. brevicorniculatum. Ind Crop Prod 66:110–118

    Article  CAS  Google Scholar 

  51. Boullani E, Lagram K, Mousadik E, Serghini MA (2017) Effect of explants density and size on the in vitro proliferation and growth of separated shoots of globe artichoke (Cynara cardunculus var. scolymus L.). JMES 8:2469–2473

    Google Scholar 

  52. Renau-Morata B, Ollero J, Arrillaga I et al (2005) Factors influencing axillary shoot proliferation and adventitious budding in cedar. Tree Physiol 25:477–486

    Article  PubMed  Google Scholar 

  53. Nhut D, An T, Huong N et al (2007) Effect of genotype, explant size, position, and culture medium on shoot generation of Gerbera jamesonii by receptacle transverse thin cell layer culture. Sci Hort 111:146–151

    Article  CAS  Google Scholar 

  54. Pierik RLM (1987) In vitro culture of higher plants. Martinus Nijhoff Publishers, Dordrect

    Book  Google Scholar 

  55. Beyaz R, Aycan M, Yildiz M (2017) Explant position effect on gene transformation to flax (Linum usitatissimum L.) via Agrobacterium tumefaciens. Period Biol 119:223–228

    Article  Google Scholar 

  56. Bhatia P, Ashwath N, Midmore D (2005) Effects of genotype, explants orientation and wounding on shoot regeneration in tomato. In Vitro Cell Dev Biol Plant 41:457–464

    Article  Google Scholar 

  57. George EF (1993) Factors affecting growth and morphogenesis. In: George EF (ed) Plant propagation by tissue culture. Exegetics Ltd., London, pp 231–271

    Google Scholar 

  58. Rani T, Yadav RC, Yadav NR, Kumar M (2013) Effect of explant orientation on shoot regeneration in tomato (Lycopersicon esculentum). Indian J Agric Sci 83:514–517

    Google Scholar 

  59. Ghorbanzade Z, Ahmadabadi M (2015) Stable transformation of the Saintpaulia ionantha by particle bombardment. Iran J Biotech 13:e1037

    Article  Google Scholar 

  60. Welander M, Maheswaran G (1992) Shoot regeneration from leaf explants of dwarfing apple rootstocks. J Plant Physiol 140:223–228

    Article  CAS  Google Scholar 

  61. Duzyaman E, Tanrisever A, Gunver G (1994) Comparative studies on regeneration of different tissues of tomato in vitro. Acta Hortic 366:235–242

    Article  Google Scholar 

  62. Bartish IV, Korkhovoi VI (1997) The composition of nutrient medium and the efficiency of shoot induction in vitro from apple leaf explants. Russ J Plant Physiol 44:381–385

    CAS  Google Scholar 

  63. Frame BR, Zhang H, Cocciolone SM, Sidorenko LV, Dietrich CR, Pegg SE, Zhen S, Schnable PS, Wang K (2000) Production of transgenic maize from bombarded type II callus: effect of gold particle size and callus morphology on transformation efficiency. In Vitro Cell Dev Biol Plant 36:21–29

    Article  Google Scholar 

  64. Vega JM, Yu W, Kennon A, Chen X, Zhang ZJ (2008) Improvement of Agrobacterium mediated transformation in Hi-II maize (Zea mays) using standard binary vectors. Plant Cell Rep 27:297–305

    Article  CAS  PubMed  Google Scholar 

  65. Wright M, Dawson J, Dunder E, Suttie J, Reed J, Kramer C, Chang Y, Novitzky R, Wang H, Artim-Moore L (2001) Efficient biolistic transformation of maize (Zea mays L.) and wheat (Triticum aestivum L.) using the phosphor mannose isomerase gene, pmi, as the selectable marker. Plant Cell Rep 20:429–436

    Article  CAS  PubMed  Google Scholar 

  66. El-itriby HA, Assem SK, Hussein EHA, Abdel-Galil FM, Madkour MA (2003) Regeneration and transformation of Egyptian maize inbred lines via immature embryo culture and a biolistic particle delivery system. In Vitro Cell Dev Biol Plant 39:524–531

    Article  Google Scholar 

  67. Rasha AO, Matheka JM, Ali AM, Machuka J (2013) Transformation of tropical maize with the NPK1 gene for drought tolerance. Int J Genet Eng 3:7–14

    Google Scholar 

  68. Maheshwari P, Kovalchuk I (2016) Agrobacterium-mediated stable genetic transformation of Populus angustifolia and Populus balsamifera. Front Plant Sci 7:296

    Article  PubMed  PubMed Central  Google Scholar 

  69. Vain P, McMullen MD, Finer JJ (1993) Osmotic treatment enhances particle bombardment-mediated transient and stable transformation of maize. Plant Cell Rep 12:84–88

    Article  CAS  PubMed  Google Scholar 

  70. Perl A, Kless H, Blumenthal A, Galili G, Galun E (1992) Improvement of plant regeneration and GUS expression in scutellar wheat calli by optimization of culture conditions and DNA- microprojectile delivery procedures. Mol Gen Genet 235:279–284

    Article  CAS  PubMed  Google Scholar 

  71. Ye X, Brown SK, Scorza R, Cordts J, Sanford JC (1994) Genetic transformation of peach tissues by particle bombardment. J Am Soc Hortic Sci 119:367–373

    Article  CAS  Google Scholar 

  72. Mansur EA, Lacorte C, de Freitas VG, de Oliveira DE, Timmerman B, Cordeiro AR (1993) Regulation of transformation efficiency of peanut (Arachis hypogaea L.) explants by Agrobacterium tumefaciens. Plant Sci 89:93–99

    Article  Google Scholar 

  73. Ozcan S, Yildiz M, Sancak C, Ozgen M (1996) Adventitious shoot regeneration in sainfoin (Onobrychis viciifolia Scop.). Turk J Bot 20:497–501

    Google Scholar 

  74. Yıldız M, Saglik Ç, Telci C, Erkiliç EG (2011) The effect of in vitro competition on shoot regeneration from hypocotyl explants of Linum usitatissimum. Turk J Bot 35:211–218

    Google Scholar 

  75. Dewir YH, El-Mahrouk ME, El-Banna AN (2015) In vitro propagation and preliminary results of Agrobacterium-mediated genetic transformation of Cordyline fruticosa. S Afr J Bot 98:45–51

    Article  CAS  Google Scholar 

  76. Muktadir MA, Habib MA, Mian MAK, Akhond Md AY (2016) Regeneration efficiency based on genotype, culture condition and growth regulators of eggplant (Solanum melongena L.). Agric Nat Resour 50:38–42

    Google Scholar 

  77. An G (1985) High efficiency transformation of cultured tobacco cells. Plant Physiol 79:568–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Janssen B, Gardener RC (1989) Localized transient expression of GUS in leaf discs following cocultivation with Agrobacterium. Plant Mol Biol 14:61–72

    Article  Google Scholar 

  79. Sangwan RS, Bourgeois Y, Sangwan-Norreel BS (1990) Genetic transformation of Arabidopsis thaliana zygotic embryos and identification of critical parameters influencing transformation. Mol Gen Genet 230:475–485

    Article  Google Scholar 

  80. Lowe BA, Krul WR (1991) Physical, chemical, developmental and genetic factors that modulate Agrobacterium-Vitis interaction. Plant Physiol 96:121–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Dixon RA, Gonzales RA (1994) Plant cell and tissue culture: a practical approach, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  82. Yildiz M, Er C (2002) The effect of sodium hypochlorite solutions on in vitro seedling growth and shoot regeneration of flax (Linum usitatissimum). Naturwissenschaften 89:259–261

    Article  CAS  PubMed  Google Scholar 

  83. Smith CR (1968) Mycobactericidal agents. In: Lawrence CA, Block SS (eds) Disinfection, sterilization, and preservation. Lea and Febiger, New York, NY, pp 504–514

    Google Scholar 

  84. Spaulding EH (1968) Chemical disinfection of medical and surgical materials. In: Lawrence CA, Block SS (eds) Disinfection, sterilization, and preservation. Lea and Febiger, New Year, NY, pp 517–531

    Google Scholar 

  85. Allan A (1991) Plant Cell Culture. In: Stafford A, Warren G (eds) Plant cell and culture. Open University Press, Milton Keynes, pp 1–24

    Google Scholar 

  86. Telci C, Yildiz M, Pelit S, Onol B, Erkılıc EG, Kendir H (2011) The effect of surface disinfection process on dormancy-breaking, seed germination, and seedling growth of Lathyrus chrysanthus Boiss under in vitro conditions. Propag Ornam Plants 11:10–16

    Google Scholar 

  87. Yildiz M (2012) The prerequisite of the success in plant tissue culture: high frequency shoot regeneration. In: Leva A, Rinaldi LMR (eds) Recent advances in plant in vitro culture. IntechOpen, London. https://doi.org/10.5772/51097

    Chapter  Google Scholar 

  88. Mubeen H, Naqvi RZ, Masood A, Shoaib MW, Raza S (2016) Gene transformation: methods, uses and applications. J Pharm Biol Sci 4:1–4

    Google Scholar 

  89. Boynton JE, Gillham NW (1993) Chloroplast transformation in Chlamydomonas. Meth Enzym 217:510–536

    Article  CAS  PubMed  Google Scholar 

  90. Zoubenko OV, Allison LA, Svab Z, Maliga P (1994) Efficient targeting of foreign genes into the tobacco plastid genome. Nucleic Acids Res 22:3819–3824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Daniell H, Datta R, Varma S, Gray S, Lee SB (1998) Containment of herbicide resistance through genetic engineering of the chloroplast genome. Nat Biotechnol 16:345–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Tanaka T, Nishihara M, Seki M, Sakamoto A, Tanaka K, lrifune K, Morikawa H (1995) Successful expression in pollen of various plant species of in vitro synthesized mRNA introduced by particle bombardment. Plant Mol BioI 28:337–34l

    Article  CAS  Google Scholar 

  93. Sansinenea E (2016) Regulatory issues in commercialization of Bacillus thuringiensis-based biopesticides. In: Singh H, Sarma B, Keswani C (eds) Agriculturally important microorganisms. Springer, Singapore

    Google Scholar 

  94. Ma X, Zhu Z, Li Y, Yang G, Pei Y (2017) Expressing a modified cowpea trypsin inhibitor gene to increase insect tolerance against Pieris rapae in Chinese cabbage. Hortic Environ Biotechnol 58:195–202

    Article  CAS  Google Scholar 

  95. Franco OL, Rigden DJ, Melo FR, Grossi-De-Sá MF (2002) Plant alpha-amylase inhibitors and their interaction with insect alpha-amylases. Eur J Biochem 269:397–412

    Article  CAS  PubMed  Google Scholar 

  96. Xiao Y, Wu K (2019) Recent progress on the interaction between insects and Bacillus thuringiensis crops. Philos Trans R Soc Lond Ser B Biol Sci 374:20180316

    Article  CAS  Google Scholar 

  97. Macedo ML, Oliveira CF, Oliveira CT (2015) Insecticidal activity of plant lectins and potential application in crop protection. Molecules 20:2014–2033

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Department of Botany, DST PURSE PHASE II, UGC-CAS, The University of Burdwan for pursuing research activities for this work.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chakraborty, N., Chakraborty, P., Sen, M., Bandopadhyay, R. (2020). Choice of Explant for Plant Genetic Transformation. In: Rustgi, S., Luo, H. (eds) Biolistic DNA Delivery in Plants. Methods in Molecular Biology, vol 2124. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0356-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0356-7_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0355-0

  • Online ISBN: 978-1-0716-0356-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics