Skip to main content

Regulation of Somatic Embryo Development in Norway Spruce

  • Protocol
  • First Online:
Plant Embryogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2122))

Abstract

Somatic embryogenesis in Norway spruce combined with reverse genetics can be used as a model to study the regulation of embryo development in conifers. The somatic embryo system includes a sequence of developmental stages, which are similar in morphology to their zygotic counterparts. The system can be sufficiently synchronized to enable the collection and study of a large number of somatic embryos at each developmental stage.

Here we describe a protocol for establishing transgenic cell lines in which genes of interest are upregulated or downregulated. Furthermore, we present methods for comparing embryo morphology and development in transgenic and control cell lines, including phenotyping the embryos, histological analysis, and tracking embryo development. The expression pattern of different genes is determined by GUS reporter assays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Smith SA, Beaulieu JM, Donoghue MJ (2010) An uncorrelated relaxed-clock analysis suggests an earlier origin for flowering plants. PNAS 107(13):5897–5902

    Article  CAS  Google Scholar 

  2. von Arnold S, Clapham D (2008) Spruce embryogenesis. In: Suárez MF, Bozhkov PV (eds) Plant embryogenesis. Methods in molecular biology, vol 427. Humana Press, Totowa, New Jersey, pp 31–47

    Chapter  Google Scholar 

  3. Sing H (1978) Embryology of gymnosperms. In: Zimmermann W, Carlquist Z, Ozenda P, Wulff HD (eds) Handbuch der Pflanzenanatomie. Gebrüder Borntrager, Berlin, pp 187–241

    Google Scholar 

  4. Klimaszewska K, Hargreaves C, Lelu-Walter M-A, Trontin J-F (2016) Advances in conifer somatic embryogenesis since year 2000. In: Germanà MA, Lambardi M (eds) In vitro plant embryogenesis in higher plats. Methods in molecular biology, vol 1359. Humana Press, Totowa, New Jersey, pp 131–166

    Chapter  Google Scholar 

  5. Filonova LH, Bozhkov PV, von Arnold S (2000) Developmental pathway of somatic embryogenesis in Picea abies as revealed by time-laps tracking. J Exp Bot 51(343):249–264

    Article  CAS  Google Scholar 

  6. Zhu T, Moschou PN, Alvarez JM, Sohlberg J, von Arnold S (2016) WUSCHEL-RELATED HOMEOBOX 2 is important for protoderm and suspensor development in the gymnosperm Norway spruce. BMC Plant Biol 16:19. https://doi.org/10.1186/s12870-016-0706-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Filonova LH, Bozhkov PV, Brukhin VB, Daniel G, Zhivotovsky B, von Arnold S (2000) Two waves of programmed cell death occur during formation and development of somatic embryos in the gymnosperm, Norway spruce. J Cell Sci 113:4399–4411

    CAS  PubMed  Google Scholar 

  8. Bozhkov PV, Suárez MF, Filonova LH (2005) Programmed cell death in plant embryogenesis. Curr Top Dev Biol 67:135–179

    Article  CAS  Google Scholar 

  9. von Arnold S, Larsson E, Moschou PN, Zhu T, Uddenberg T, Bozhkov PV (2016) Norway spruce as a model for studying regulation of somatic embryo development in conifers. In: Park Y-S, Bonga JM, Moo H-K (eds) Vegetative propagation of forest trees. National Institute of Forest Science, Seoul, pp 351–372. ISBN 978-89-8176-064-9

    Google Scholar 

  10. Larsson E, Sitbon F, Ljung K, von Arnold S (2008) Inhibited polar auxin transport results in aberrant embryo development in Norway spruce. New Phytol 177:356–366

    CAS  PubMed  Google Scholar 

  11. Larsson E, Sitbon F, von Arnold S (2008) Polar auxin transport controls suspensor fate. Plant Signal Behav 3:469–470

    Article  Google Scholar 

  12. Smertenko A, Bozhkov PV (2014) Somatic embryogenesis: life and death processes during apical-basal patterning. J Exp Bot 55(1):1343–1360

    Article  Google Scholar 

  13. Zhu T, Moschou PN, Alvarez JM, Sohlberg J, von Arnold S (2014) WUSCHEL-RELATED HOMEOBOX 8/9 is important for proper embryo patterning in the gymnosperm Norway spruce. J Exp Bot 65:6543–6552

    Article  CAS  Google Scholar 

  14. Alvarez J, Sohlberg J, Engström P, Zhu T, Englund M, Moschou PN, von Arnold S (2015) The WUSCHEL-RELATED HOMEOBOX 3 gene PaWOX3 regulates lateral organ formation in Norway spruce. New Phytol 208:1078–1088

    Article  CAS  Google Scholar 

  15. Uddenberg D, Valladares S, Abrahamsson M, Sundström J, Sundås-Larsson A, von Arnold S (2011) Embryogenic potential and expression of embryogenesis-related genes in conifers are affected by treatment with a histone deacetylase inhibitor. Planta 234:527–539

    Article  CAS  Google Scholar 

  16. Uddenberg D, Abrahamsson M, von Arnold S (2016) Overexpression of PaHAP3A stimulates differentiation of ectopic embryos on maturing somatic embryos of Norway spruce. Tree Genet Genomes 12:18. https://doi.org/10.1007/s11295-016

    Article  Google Scholar 

  17. Abrahamsson M, Valladares S, Merino I, Larsson E, von Arnold S (2017) Degeneration patterning in somatic embryos of Pinus sylvestris L. In Vitro Cell Dev Biol 53:86–96

    Article  CAS  Google Scholar 

  18. Buchholtz JT (1926) Origin of cleavage polyembryony in conifers. Bot Gaz 8(1):55–71

    Article  Google Scholar 

  19. Merino I, Abrahamsson M, Sterck L, Craven-Bartle B, Canovas F, von Arnold S (2016) Transcript profiling for early stages during embryo development in Scots pine. BMC Plant Biol 16:255. https://doi.org/10.1186/s12870-016-0939-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Merino I, Abrahamsson M, Larsson E, von Arnold S (2018) Identification of molecular processes that differ among Scots pine somatic embryogenic cell lines leading to the development of normal and abnormal cotyledonary embryos. Tree Genet Genomes 14:34. https://doi.org/10.1007/s11295-018-1247-z

    Article  Google Scholar 

  21. Pullman GS, Zeng X, Copeland-Kamp B, Crockett J, Lucrezi J, May SW, Bucalo K (2015) Conifer somatic embryogenesis: improvements by supplementation of medium with oxidation-reduction agents. Tree Physiol 35:209–224

    Article  CAS  Google Scholar 

  22. Karlgren A, Carlsson J, Gyllenstrand N et al (2009) Non-radioactive in situ hybridization protocol applicable for Norway spruce and a range of plant species. J Vis Exp 26:1205. https://doi.org/10.3791/1205

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara von Arnold .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

von Arnold, S., Zhu, T., Larsson, E., Uddenberg, D., Clapham, D. (2020). Regulation of Somatic Embryo Development in Norway Spruce. In: Bayer, M. (eds) Plant Embryogenesis. Methods in Molecular Biology, vol 2122. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0342-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0342-0_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0341-3

  • Online ISBN: 978-1-0716-0342-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics