Skip to main content

Oriented Immobilization on Gold Nanoparticles of a Recombinant Therapeutic Zymogen

  • Protocol
  • First Online:
Nanoparticles in Biology and Medicine

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2118))

  • 1436 Accesses

Abstract

Direct immobilization of functional proteins on gold nanoparticles (AuNPs) affects their structure and function. Changes may vary widely and range from strong inhibition to the enhancement of protein function. More often though the outcome of direct protein immobilization results in protein misfolding and the loss of protein activity. Additional complications arise when the protein being immobilized is a zymogen which requires and relies on additional protein–protein interactions to exert its function. Here we describe molecular design of a glutathione-S-transferase-Staphylokinase fusion protein (GST-SAK) and its conjugation to AuNPs. The multivalent AuNP-(GST-SAK)n complexes generated show plasminogen activation activity in vitro. The methods described are transferable and could be adapted for conjugation and functional analysis of other plasminogen activators, thrombolytic preparations or other functional enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schofield CL, Haines AH, Field RA et al (2006) Silver and gold glyconanoparticles for colorimetric bioassays. Langmuir 22:6707–6711

    Article  CAS  PubMed  Google Scholar 

  2. Guarise C, Pasquato L, De Filippis V et al (2006) Gold nanoparticles-based protease assay. Proc Natl Acad Sci U S A 103:3978–3982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cao YC, Jin R, Mirkin CA (2002) Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297:1536–1540

    Article  CAS  PubMed  Google Scholar 

  4. Park SJ, Taton TA, Mirkin CA (2002) Array-based electrical detection of DNA with nanoparticle probes. Science 295:1503–1506

    Article  CAS  PubMed  Google Scholar 

  5. Du Y, Luo XL, Xu JJ et al (2007) A simple method to fabricate a chitosan-gold nanoparticles film and its application in glucose biosensor. Bioelectrochemistry 70:342–347

    Article  CAS  PubMed  Google Scholar 

  6. Boyer D, Tamarat P, Maali A et al (2002) Photothermal imaging of nanometer-sized metal articles among scatterers. Science 297:1160–1163

    Article  CAS  PubMed  Google Scholar 

  7. Zhang Q, Gong Y, Guo XJ et al (2018) Multifunctional gold nanoparticle-based fluorescence resonance energy-transfer probe for target drug delivery and cell fluorescence imaging. ACS Appl Mater Interfaces 10:34840–34848

    Article  CAS  PubMed  Google Scholar 

  8. Paciotti GF, Myer L, Weinreich D et al (2004) Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Deliv 11:169–183

    Article  CAS  PubMed  Google Scholar 

  9. Salem AK, Searson PC, Leong KW (2003) Multifunctional nanorods for gene delivery. Nat Mater 10:668–671

    Article  CAS  Google Scholar 

  10. Joshi HM, Bhumkar DR, Joshi K et al (2006) Gold nanoparticles as carriers for efficient transmucosal insulin delivery. Langmuir 22:300–305

    Article  CAS  PubMed  Google Scholar 

  11. Peña B, Maldonado M, Bonham AJ et al (2019) Gold nanoparticle-functionalized reverse thermal gel for tissue engineering applications. ACS Appl Mater Interfaces 11:18671–18680

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. West JL, Halas NJ (2003) Engineered nanomaterials for biophotonics applications: improving sensing, imaging, and therapeutics. Annu Rev Biomed Eng 5:285–292

    Article  CAS  PubMed  Google Scholar 

  13. Chen R, Riviere JE (2017) Biological and environmental surface interactions of nanomaterials: characterization, modeling, and prediction. WIREs Nanomed Nanobiotechnol 9:e1440

    Article  CAS  Google Scholar 

  14. Yin MM, Dong P, Chen WQ et al (2017) Thermodynamics and mechanisms of the interactions between ultrasmall fluorescent gold nanoclusters and human serum albumin, gamma-globulins, and transferrin: a spectroscopic approach. Langmuir 33:5108–5116

    Article  CAS  PubMed  Google Scholar 

  15. Bailes J, Gazi S, Ivanova R (2012) Effect of gold nanoparticle conjugation on the activity and stability of functional proteins. Methods Mol Biol 906:89–99

    CAS  PubMed  Google Scholar 

  16. Lv M, Zhu E, Su Y et al (2009) Trypsin-gold nanoparticle conjugates: binding, enzymatic activity, and stability. Prep Biochem Biotechnol 39(4):429–438

    Article  CAS  PubMed  Google Scholar 

  17. Huang F, Huang CC, Chang HT (2003) Exploring the activity and specificity of gold nanoparticle-bound trypsin by capillary electrophoresis with laser-induced fluorescence detection. Langmuir 19(18):7498–7502

    Article  CAS  Google Scholar 

  18. Zhao X, Hao F, Lu D et al (2015) Influence of the surface functional group density on the carbon-nanotube-induced α-chymotrypsin structure and activity alterations. ACS Appl Mater Interfaces 7:18880–18890

    Article  CAS  PubMed  Google Scholar 

  19. Pan Y, Neupane S, Farmakes J et al (2017) Probing the structural basis and adsorption mechanism of an enzyme on nano-sized protein carriers. Nanoscale 9:3512–3523

    Article  CAS  PubMed  Google Scholar 

  20. Halling PJ, Ulijn RV, Flitsch SL (2005) Understanding enzyme action on immobilised substrates. Curr Opin Biotechnol 16:385–392

    Article  CAS  PubMed  Google Scholar 

  21. Basso A, Braiuca P, Ebert C et al (2006) Properties and applications of supports for enzyme-mediated transformations in solid phase synthesis. J Chem Technol Biotechnol 81:1626–1640

    Article  CAS  Google Scholar 

  22. Kolobanova SV, Filippova IY, Lysogorskaya EN (2001) The enzymatic segment condensation of peptides on a solid phase in organic medium. Bioorg Khim 27:347–351

    CAS  PubMed  Google Scholar 

  23. Doeze RHP, Maltman BA, Egan CL et al (2004) Profiling primary protease specificity by peptide synthesis on a solid support. Angew Chem Int Ed 43:3138–3141

    Article  CAS  Google Scholar 

  24. Cortez J, Vorobieva E, Gralheira D et al (2011) Bionanoconjugates of tyrosinase and peptide-derivatised gold nanoparticles for biosensing of phenolic compounds. J Nanopart Res 13:1101–1113

    Article  CAS  Google Scholar 

  25. GE Healthcare Life Sciences (2014) GST Gene Fusion System Handbook. GE Healthcare Life Sciences Protein Purification Methods. https://cdn.gelifesciences.com/dmm3bwsv3/AssetStream.aspx?mediaformatid=10061&destinationid=10016&assetid=11873. Accessed 30 Jan 2018

  26. Ferrari E, Darios F, Zhang F et al (2010) Binary polypeptide system for permanent and oriented protein immobilization. J Nanobiotechnology 8:9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ma W, Saccardo A, Roccatano D et al (2018) Modular assembly of proteins on nanoparticles. Nat Commun 9:1489

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Prasad B, Salunkhe SS, Padmanabhan S (2010) Novel self-cleavage activity of Staphylokinase fusion proteins: an interesting finding and its possible applications. Protein Expr Purif 69:191–197

    Article  CAS  PubMed  Google Scholar 

  29. Parry MA, Fernandez-Catalan C, Bergner A et al (1998) The ternary microplasmin-Staphylokinase-microplasmin complex is a proteinase-cofactor-substrate complex in action. Nat Struct Biol 5:917–923

    Article  CAS  PubMed  Google Scholar 

  30. Jespers L, Vanwetswinkel S, Lijnen HR et al (1999) Structural and functional basis of plasminogen activation by Staphylokinase. Thromb Haemost 81:479–485

    Article  CAS  PubMed  Google Scholar 

  31. Osamu M, Masashi S, Kisaku S et al (1995) Thrombolytic peptide, production thereof, and thrombolytic agent. United States Patent US 5,475,089, 12 Dec 1995

    Google Scholar 

  32. Ella KM, Sumathy K (2015) Chimeric Fusion Proteins. United States Patent US 8,968,728, 3 Mar 2015

    Google Scholar 

  33. Hoischen C, Gumpert J, Kujau JM et al (2001) Novel l-form bacterial strains, method for producing same and the use thereof for producing gene products. Patent: WO 0166776-A2 13 Sep 2001

    Google Scholar 

  34. Wirsching F, Luge C, Schwienhorst A (2002) Modular design of a novel chimeric protein with combined thrombin inhibitory activity and plasminogen-activating potential. Mol Genet Metab 75:250–259

    Article  CAS  PubMed  Google Scholar 

  35. Szarka SJ, Sihota EG, Habibi HR et al (1999) Staphylokinase as a plasminogen activator component in recombinant fusion proteins. Appl Environ Microbiol 65:506–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yu A, Zhang C, Dong C et al (2008) Two characteristics of a recombinant fusion protein composed of Staphylokinase and hirudin: high thrombus affinity and thrombus-targeting release of anticoagulant activity. Chin J Biotechnol 24:1955–1961

    Article  CAS  Google Scholar 

  37. Pulicherla KK, Kumar A, Gadupudi GS et al (2013) In vitro characterization of a multifunctional Staphylokinase variant with reduced reocclusion, produced from salt inducible E. coli GJ1158. Biomed Res Int 2013:297305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Icke C, Schlott B, Ager OO et al (2002) Fusion proteins with anticoagulant and fibrinolytic properties: functional studies and structural considerations. Mol Pharmacol 62:203–209

    Article  CAS  PubMed  Google Scholar 

  39. Maheshwari N, Sahni G (2015) Protein fusion constructs possessing thrombolytic and anticoagulant properties. United States Patent US 9,150,844, 6 Oct 2015

    Google Scholar 

  40. Hui J, Yu XJ, Cui XJ et al (2014) Construction of novel chimeric proteins through the truncation of SEC2 and Sak from Staphylococcus aureus. Biosci Biotechnol Biochem 78:1514–1521

    Article  CAS  PubMed  Google Scholar 

  41. Szemraj J, Zakrzeska A, Brown G et al (2011) New derivative of Staphylokinase SAK-RGD-K2-Hirul exerts thrombolytic effects in the arterial thrombosis model in rats. Pharmacol Rep 63:1169–1179

    Article  CAS  PubMed  Google Scholar 

  42. Wu SC, Castellino FJ, Wong SL (2003) A fast-acting, modular-structured Staphylokinase fusion with Kringle-1 from human plasminogen as the fibrin-targeting domain offers improved clot lysis efficacy. J Biol Chem 278:18199–18206

    Article  CAS  PubMed  Google Scholar 

  43. Van Zyl WB, Pretorius GH, Lamprecht S et al (2000) PLATSAK, a potent antithrombotic and fibrinolytic protein, inhibits arterial and venous thrombosis in a baboon model. Thromb Res 98:435–443

    Article  PubMed  Google Scholar 

  44. Schlott B, Guhrs KH, Hartmann M et al (1997) Staphylokinase requires NH2-terminal proteolysis for plasminogen activation. J Biol Chem 272:6067–6072

    Article  CAS  PubMed  Google Scholar 

  45. Smith DB, Johnson KS (1988) Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene 67:31–40

    Article  CAS  PubMed  Google Scholar 

  46. Landskroner K, Olson N, Jesmok G (2005) Cross-species pharmacologic evaluation of plasmin as a direct-acting thrombolytic agent: ex vivo evaluation for large animal model development. J Vasc Interv Radiol 16:369–377

    Article  PubMed  Google Scholar 

  47. Cederholm-Williams SA (1981) Concentration of plasminogen and antiplasmin in plasma and serum. J Clin Pathol 34:979–981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail Soloviev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dosadina, E. et al. (2020). Oriented Immobilization on Gold Nanoparticles of a Recombinant Therapeutic Zymogen. In: Ferrari, E., Soloviev, M. (eds) Nanoparticles in Biology and Medicine. Methods in Molecular Biology, vol 2118. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0319-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0319-2_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0318-5

  • Online ISBN: 978-1-0716-0319-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics