Skip to main content

Poly(Lactic-co-Glycolic Acid) Nanoparticle Delivery of Peptide Nucleic Acids In Vivo

  • Protocol
  • First Online:
Book cover Peptide Nucleic Acids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2105))

Abstract

Many important biological applications of peptide nucleic acids (PNAs) target nucleic acid binding in eukaryotic cells, which requires PNA translocation across at least one membrane barrier. The delivery challenge is further exacerbated for applications in whole organisms, where clearance mechanisms rapidly deplete and/or deactivate exogenous agents. We have demonstrated that nanoparticles (NPs) composed of biodegradable polymers can encapsulate and release PNAs (alone or with co-reagents) in amounts sufficient to mediate desired effects in vitro and in vivo without deleterious reactions in the recipient cell or organism. For example, poly(lactic-co-glycolic acid) (PLGA) NPs can encapsulate and deliver PNAs and accompanying reagents to mediate gene editing outcomes in cells and animals, or PNAs alone to target oncogenic drivers in cells and correct cancer phenotypes in animal models. In this chapter, we provide a primer on PNA-induced gene editing and microRNA targeting—the two PNA-based biotechnological applications where NPs have enhanced and/or enabled in vivo demonstrations—as well as an introduction to the PLGA material and detailed protocols for formulation and robust characterization of PNA/DNA-laden PLGA NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rogers FA, Vasquez KM, Egholm M et al (2002) Site-directed recombination via bifunctional PNA–DNA conjugates. Proc Natl Acad Sci U S A 99(26):16695–16700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Faruqi AF, Egholm M, Glazer PM (1998) Peptide nucleic acid-targeted mutagenesis of a chromosomal gene in mouse cells. Proc Natl Acad Sci U S A 95(4):1398–1403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rogers FA, Lin SS, Hegan DC et al (2012) Targeted gene modification of hematopoietic progenitor cells in mice following systemic administration of a PNA-peptide conjugate. Mol Ther 20(1):109–118

    Article  CAS  PubMed  Google Scholar 

  4. Kim K-H, Nielsen PE, Glazer PM (2006) Site-specific gene modification by PNAs conjugated to psoralen. Biochemistry 45(1):314–323

    Article  CAS  PubMed  Google Scholar 

  5. Kim K-H, Nielsen PE, Glazer PM (2007) Site-directed gene mutation at mixed sequence targets by psoralen-conjugated pseudo-complementary peptide nucleic acids. Nucleic Acids Res 35(22):7604–7613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chin JY, Kuan JY, Lonkar PS et al (2008) Correction of a splice-site mutation in the beta-globin gene stimulated by triplex-forming peptide nucleic acids. Proc Natl Acad Sci U S A 105(36):13514–13519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lonkar P, Kim K-H, Kuan JY et al (2009) Targeted correction of a thalassemia-associated β-globin mutation induced by pseudo-complementary peptide nucleic acids. Nucleic Acids Res 37(11):3635–3644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schleifman Erica B, Bindra R, Leif J et al (2011) Targeted disruption of the CCR5 gene in human hematopoietic stem cells stimulated by peptide nucleic acids. Chem Biol 18(9):1189–1198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. McNeer NA, Chin JY, Schleifman EB et al (2011) Nanoparticles deliver triplex-forming PNAs for site-specific genomic recombination in CD34+ human hematopoietic progenitors. Mol Ther 19(1):172–180

    Article  CAS  PubMed  Google Scholar 

  10. McNeer NA, Schleifman EB, Cuthbert A et al (2012) Systemic delivery of triplex-forming PNA and donor DNA by nanoparticles mediates site-specific genome editing of human hematopoietic cells in vivo. Gene Ther 20:658

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Schleifman EB, McNeer NA, Jackson A et al (2013) Site-specific genome editing in PBMCs with PLGA nanoparticle-delivered PNAs confers HIV-1 resistance in humanized mice. Mol Ther Nucleic Acids 2:e135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chin JY, Reza F, Glazer PM (2013) Triplex-forming peptide nucleic acids induce heritable elevations in gamma-globin expression in hematopoietic progenitor cells. Mol Ther 21(3):580–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Raman B, Elias Q, Nicole AM et al (2014) Single-stranded γPNAs for in vivo site-specific genome editing via Watson-Crick recognition. Curr Gene Ther 14(5):331–342

    Article  CAS  Google Scholar 

  14. Fields RJ, Quijano E, McNeer NA et al (2015) Modified poly(lactic-co-glycolic acid) nanoparticles for enhanced cellular uptake and gene editing in the lung. Adv Healthc Mater 4(3):361–366

    Article  CAS  PubMed  Google Scholar 

  15. McNeer NA, Anandalingam K, Fields RJ et al (2015) Nanoparticles that deliver triplex-forming peptide nucleic acid molecules correct F508del CFTR in airway epithelium. Nat Commun 6:6952

    Article  CAS  PubMed  Google Scholar 

  16. Bahal R, Ali McNeer N, Quijano E et al (2016) In vivo correction of anaemia in β-thalassemic mice by γPNA-mediated gene editing with nanoparticle delivery. Nat Commun 7:13304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ricciardi AS, Bahal R, Farrelly JS et al (2018) In utero nanoparticle delivery for site-specific genome editing. Nat Commun 9(1):2481

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Quijano E, Bahal R, Ricciardi A et al (2017) Therapeutic peptide nucleic acids: principles, limitations, and opportunities. Yale J Biol Med 90(4):583–598

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Ricciardi AS, Quijano E, Putman R et al (2018) Peptide nucleic acids as a tool for site-specific gene editing. Molecules 23(3):632

    Article  PubMed Central  CAS  Google Scholar 

  20. Coull J, Deuholm KL, Christensen L et al (1995) Efficient pH-independent sequence-specific DNA binding by pseudoisocytosine-containing bis-PNA. Nucleic Acids Res 23(2):217–222

    Article  PubMed  PubMed Central  Google Scholar 

  21. Griffith MC, Risen LM, Greig MJ et al (1995) Single and bis peptide nucleic acids as triplexing agents: binding and stoichiometry. J Am Chem Soc 117(2):831–832

    Article  CAS  Google Scholar 

  22. Bentin T, Larsen HJ, Nielsen PE (2003) Combined triplex/duplex invasion of double-stranded DNA by “tail-clamp” peptide nucleic acid. Biochemistry 42(47):13987–13995

    Article  CAS  PubMed  Google Scholar 

  23. Dragulescu-Andrasi A, Rapireddy S, Frezza BM et al (2006) A simple γ-backbone modification preorganizes peptide nucleic acid into a helical structure. J Am Chem Soc 128(31):10258–10267

    Article  CAS  PubMed  Google Scholar 

  24. Sahu B, Sacui I, Rapireddy S et al (2011) Synthesis and characterization of conformationally preorganized, (R)-diethylene glycol-containing γ-peptide nucleic acids with superior hybridization properties and water solubility. J Org Chem 76(14):5614–5627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bahal R, Sahu B, Rapireddy S et al (2012) Sequence-unrestricted, Watson–Crick recognition of double helical B-DNA by (R)-MiniPEG-γPNAs. Chembiochem 13(1):56–60

    Article  CAS  PubMed  Google Scholar 

  26. Lohse J, Dahl O, Nielsen PE (1999) Double duplex invasion by peptide nucleic acid: a general principle for sequence-specific targeting of double-stranded DNA. Proc Natl Acad Sci U S A 96(21):11804–11808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Stewart MP, Sharei A, Ding X et al (2016) In vitro and ex vivo strategies for intracellular delivery. Nature 538:183

    Article  CAS  PubMed  Google Scholar 

  28. Liu J, Gaj T, Yang Y et al (2015) Efficient delivery of nuclease proteins for genome editing in human stem cells and primary cells. Nat Protoc 10:1842

    Article  CAS  PubMed  Google Scholar 

  29. Thompson AA, Walters MC, Kwiatkowski J et al (2018) Gene therapy in patients with transfusion-dependent β-thalassemia. N Engl J Med 378(16):1479–1493

    Article  CAS  PubMed  Google Scholar 

  30. Cottle RN, Lee CM, Bao G (2016) Treating hemoglobinopathies using gene-correction approaches: promises and challenges. Hum Genet 135(9):993–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Barber GN (2011) Innate immune DNA sensing pathways: STING, AIMII and the regulation of interferon production and inflammatory responses. Curr Opin Immunol 23(1):10–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cai X, Chiu Y-H, Chen Zhijian J (2014) The cGAS-cGAMP-STING pathway of cytosolic DNA sensing and signaling. Mol Cell 54(2):289–296

    Article  CAS  PubMed  Google Scholar 

  33. Hütter G, Nowak D, Mossner M et al (2009) Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N Engl J Med 360(7):692–698

    Article  PubMed  Google Scholar 

  34. Dever DP, Bak RO, Reinisch A et al (2016) CRISPR/Cas9 β-globin gene targeting in human haematopoietic stem cells. Nature 539:384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wu Y, Zeng J, Roscoe BP et al (2019) Highly efficient therapeutic gene editing of human hematopoietic stem cells. Nat Med 25:776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Riordan J, Rommens J, Kerem B et al (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245(4922):1066–1073

    Article  CAS  PubMed  Google Scholar 

  37. Aluigi M, Fogli M, Curti A et al (2006) Nucleofection is an efficient nonviral transfection technique for human bone marrow–derived mesenchymal stem cells. Stem Cells Dev 24(2):454–461

    Article  Google Scholar 

  38. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  CAS  PubMed  Google Scholar 

  39. Ha M, Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15(8):509–524

    Article  CAS  PubMed  Google Scholar 

  40. Rupaimoole R, Slack FJ (2017) MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 16(3):203–222

    Article  CAS  PubMed  Google Scholar 

  41. Fabani MM, Gait MJ (2008) miR-122 targeting with LNA/2′-O-methyl oligonucleotide mixmers, peptide nucleic acids (PNA), and PNA-peptide conjugates. RNA 14(2):336–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Oh SY, Ju Y, Park H (2009) A highly effective and long-lasting inhibition of miRNAs with PNA-based antisense oligonucleotides. Mol Cells 28(4):341–345

    Article  CAS  PubMed  Google Scholar 

  43. Cheng CJ, Saltzman WM (2012) Polymer nanoparticle-mediated delivery of microRNA inhibition and alternative splicing. Mol Pharm 9(5):1481–1488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Xue H, Hua LM, Guo M et al (2014) SHIP1 is targeted by miR-155 in acute myeloid leukemia. Oncol Rep 32(5):2253–2259

    Article  CAS  PubMed  Google Scholar 

  45. Babar IA, Cheng CJ, Booth CJ et al (2012) Nanoparticle-based therapy in an in vivo microRNA-155 (miR-155)-dependent mouse model of lymphoma. Proc Natl Acad Sci U S A 109(26):E1695–E1704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fabani MM, Abreu-Goodger C, Williams D et al (2010) Efficient inhibition of miR-155 function in vivo by peptide nucleic acids. Nucleic Acids Res 38(13):4466–4475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cheng CJ, Bahal R, Babar IA et al (2015) MicroRNA silencing for cancer therapy targeted to the tumour microenvironment. Nature 518(7537):107–110

    Article  CAS  PubMed  Google Scholar 

  48. Kulshreshtha R, Ferracin M, Wojcik SE et al (2007) A microRNA signature of hypoxia. Mol Cell Biol 27(5):1859–1867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Puissegur MP, Mazure NM, Bertero T et al (2011) miR-210 is overexpressed in late stages of lung cancer and mediates mitochondrial alterations associated with modulation of HIF-1 activity. Cell Death Differ 18(3):465–478

    Article  CAS  PubMed  Google Scholar 

  50. Crosby ME, Kulshreshtha R, Ivan M et al (2009) MicroRNA regulation of DNA repair gene expression in hypoxic stress. Cancer Res 69(3):1221–1229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gupta A, Quijano E, Liu Y et al (2017) Anti-tumor activity of miniPEG-gamma-modified PNAs to inhibit MicroRNA-210 for cancer therapy. Mol Ther Nucleic Acids 9:111–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bahal R, Sahu B, Rapireddy S et al (2012) Sequence-unrestricted, Watson-Crick recognition of double helical B-DNA by (R)-miniPEG-gammaPNAs. Chembiochem 13(1):56–60

    Article  CAS  PubMed  Google Scholar 

  53. Seo YE, Suh HW, Bahal R et al (2019) Nanoparticle-mediated intratumoral inhibition of miR-21 for improved survival in glioblastoma. Biomaterials 201:87–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Luo D, Woodrow-Mumford K, Belcheva N et al (1999) Controlled DNA delivery systems. Pharm Res 16(8):1300–1308

    Article  CAS  PubMed  Google Scholar 

  55. Saltzman WM (2001) Drug delivery: engineering principles for drug therapy. Oxford University Press, Oxford

    Google Scholar 

  56. Kapoor DN, Bhatia A, Kaur R et al (2015) PLGA: a unique polymer for drug delivery. Ther Deliv 6(1):41–58

    Article  CAS  PubMed  Google Scholar 

  57. Woodrow KA, Cu Y, Booth CJ et al (2009) Intravaginal gene silencing using biodegradable polymer nanoparticles densely loaded with small-interfering RNA. Nat Mater 8(6):526–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Devalliere J, Chang WG, Andrejecsk JW et al (2014) Sustained delivery of proangiogenic microRNA-132 by nanoparticle transfection improves endothelial cell transplantation. FASEB J 28(2):908–922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Danhier F, Ansorena E, Silva JM et al (2012) PLGA-based nanoparticles: an overview of biomedical applications. J Control Release 161(2):505–522

    Article  CAS  PubMed  Google Scholar 

  60. Nimesh S (2013) 15—Poly(D,L-lactide-co-glycolide)-based nanoparticles. In: Nimesh S (ed) Gene therapy. Woodhead Publishing, Oxford, Cambridge, Philadelphia, New Delhi

    Chapter  Google Scholar 

  61. Manna A, Rapireddy S, Bahal R et al (2014) MiniPEG-gammaPNA. Methods Mol Biol 1050:1–12

    Article  CAS  PubMed  Google Scholar 

  62. Hackley V, Clogston J (2007) Measuring the size of nanoparticles in aqueous media using batch-mode dynamic light scattering. NIST Special Publication 1200:6

    Google Scholar 

  63. Clogston J, Patri A (2009) NCL method PCC-2: measuring zeta potential of nanoparticles. Nanotechnology Characterization Laboratory, Frederick, MD

    Google Scholar 

Download references

Acknowledgments

This work was supported by the NIGMS Medical Scientist Training Program T32GM07205 (to E.Q.); National Institutes of Health grants R01HL125892, R01AI112443, and UG3HL147352 (to W.M.S. and P.M.G.); and institutional training grant 5T32GM007223-43 (to E.Q.). A.S.P. was supported by NIH National Research Service Awards (NRSAs): T32 (GM86287) training grant and F32 (HL142144) individual postdoctoral fellowship. S.N.O was supported by UG3HL147352 (to P.M.G. and W.M.S.).

Disclosures/Competing interests: E.Q., A.S.P., W.M.S., and P.M.G. are consultants for Trucode Gene Repair, Inc. W.M.S. and P.M.G also have equity interests in Trucode Gene Repair, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter M. Glazer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Oyaghire, S.N., Quijano, E., Piotrowski-Daspit, A.S., Saltzman, W.M., Glazer, P.M. (2020). Poly(Lactic-co-Glycolic Acid) Nanoparticle Delivery of Peptide Nucleic Acids In Vivo. In: Nielsen, P. (eds) Peptide Nucleic Acids. Methods in Molecular Biology, vol 2105. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0243-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0243-0_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0242-3

  • Online ISBN: 978-1-0716-0243-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics