Skip to main content

Methods for Screening Legume Crops for Abiotic Stress Tolerance through Physiological and Biochemical Approaches

  • Protocol
  • First Online:
Legume Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2107))

Abstract

Legume crops are subjected to a wide range of abiotic stresses, which stimulate an array of physiological, biochemical, and molecular responses. However, different genotypes may exhibit significant variations between individual responses, which can determine their tolerance or susceptibility to these stresses. The present chapter suggests a broad range of assays that can help in understanding stress perception by plants at cellular and molecular levels. The genotypes may be sorted depending on their tolerance potential, by broadly analysing morphological, physiological, biochemical, and enzyme kinetics parameters. These assays are very beneficial in revealing the mechanism of stress perception and response in varied plant types, and have helped in discriminating contrasting genotypes. Here, we have described detailed protocols of assays which may be carried out to assess tolerance or susceptibility to abiotic stresses. The analysis, as a whole, can help researchers understand the effect of abiotic stresses on plant biochemical pathways, be it photosynthesis, redox homeostasis, metabolite perturbation, signaling, transcription, and translation. These protocols may be beneficial in identification of suitable donors for breeding programs, as well as for identifying promising candidate genes or pathways for developing stress tolerant legume crops through genetic engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Foyer CH, Lam H, Nguyen HT, Siddique KHM, Varshney RK, Colmer TD et al (2016) Neglecting legumes have compromised health and sustainable food production. Nat Plants 2:1–10. https://doi.org/10.1038/nplants.2016.112

    Article  Google Scholar 

  2. Kunert KJ, Vorster BJ, Fenta BA, Kibido T, Davis TS (2016) Drought stress responses in soybean roots and nodules. Front Plant Sci 7:1015. https://doi.org/10.3389/fpls.2016.01015

    Article  PubMed  PubMed Central  Google Scholar 

  3. Vadez V, Krishnamurthy L, Serraj R, Gaur PM, Upadhyaya HD (2007) Large variation in salinity tolerance in chickpea is explained by differences in sensitivity at the reproductive stage. Field Crop Res 104:123–129. https://doi.org/10.1016/j.fcr.2007.05.014

    Article  Google Scholar 

  4. Hekneby M, Antol MC, Manuel S (2006) Frost resistance and biochemical changes during cold acclimation in different annual legumes. J Environ Exp Bot 55:305–314. https://doi.org/10.1016/j.envexpbot.2004.11.010

    Article  CAS  Google Scholar 

  5. Valdés-lópez O, Batek J, Gomez-hernandez N, Stacey G, Sayre R (2016) Soybean roots grown under heat stress show global changes in their transcriptional and proteomic profiles. Front Plant Sci 7:517. https://doi.org/10.3389/fpls.2016.00517

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499. https://doi.org/10.1146/annurev.arplant.51.1.463

    Article  CAS  PubMed  Google Scholar 

  7. Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250. https://doi.org/10.1046/j.0016-8025.2001.00808.x

    Article  CAS  PubMed  Google Scholar 

  8. Rosa M, Hilal M, González JA, Prado FE (2004) Changes in soluble carbohydrates and related enzymes induced by low temperature during early developmental stages of quinoa (Chenopodium quinoa) seedlings. J Plant Physiol 161:683–689. https://doi.org/10.1078/0176-1617-01257

    Article  CAS  PubMed  Google Scholar 

  9. Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527. https://doi.org/10.1093/aob/mcg058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bohnert HJ, Gong Q, Li P, Ma S (2006) Unraveling abiotic stress tolerance mechanisms—getting genomics going. Curr Opin Plant Biol 9:180–188. https://doi.org/10.1016/j.pbi.2006.01.003

    Article  CAS  PubMed  Google Scholar 

  11. Hu YC, Schmidhalter U (2005) Drought and salinity: a comparison of their effects on mineral nutrition of plants. J Plant Nutr Soil Sci 168:541–549. https://doi.org/10.1002/jpln.200420516.541

    Article  CAS  Google Scholar 

  12. Browse J, Xin Z (2001) Temperature sensing and cold acclimation. Curr Opin Plant Biol 4:241–246. https://doi.org/10.1016/S1369-5266(00)00167-9

    Article  CAS  PubMed  Google Scholar 

  13. Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11. https://doi.org/10.1093/jexbot/53.366.1

    Article  CAS  PubMed  Google Scholar 

  14. Foyer CH, Noctor G (2005) Oxidant and antioxidant signalling in plants : a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 28:1056–1071. https://doi.org/10.1111/j.1365-3040.2005.01327.x

    Article  CAS  Google Scholar 

  15. Zhu JK (2016) Abiotic stress signaling and sesponses in plants. Cell 167:313–324. https://doi.org/10.1016/j.cell.2016.08.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. He M, He C-Q, Ding N-Z (2018) Abiotic stresses: general defenses of land plants and chances for engineering multistress tolerance. Front Plant Sci 9:1–18. https://doi.org/10.3389/fpls.2018.01771

    Article  Google Scholar 

  17. Merchan F, de Lorenzo L, Rizzo SG, Manyani H, Frugier F, Sousa C et al (2007) Identification of regulatory pathways involved in the reacquisition of root growth after salt stress in Medicago truncatula. Plant J 51:1–17. https://doi.org/10.1111/j.1365-313X.2007.03117.x

    Article  CAS  PubMed  Google Scholar 

  18. Jain D, Chattopadhyay D (2010) Analysis of gene expression in response to water deficit of chickpea (Cicer arietinum L.) varieties differing in drought tolerance. BMC Plant Biol 10:24. https://doi.org/10.1186/1471-2229-10-24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mhadhbi H, Fotopoulos V, Mylona PV, Jebara M, Elarbi M (2011) Antioxidant gene—enzyme responses in Medicago truncatula genotypes with different degree of sensitivity to salinity. Physiol Plant 141:201–214. https://doi.org/10.1111/j.1399-3054.2010.01433.x

    Article  CAS  PubMed  Google Scholar 

  20. Filippou P, Antoniou C, Fotopoulos V (2011) Effect of drought and rewatering on the cellular status and antioxidant response of Medicago truncatula plants. Plant Signal Behav 6:270–277. https://doi.org/10.4161/psb.6.2.14633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen LM, Zhou XA, Li WB, Chang W, Zhou R, Wang C et al (2013) Genome-wide transcriptional analysis of two soybean genotypes under dehydration and rehydration conditions. BMC Genomics 14:687. https://doi.org/10.1186/1471-2164-14-687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Araújo SS, Beebe S, Crespi M, Delbreil B, Gonzalez EM, Gruber V et al (2015) Abiotic stress responses in legumes: strategies used to cope with environmental challenges. Crit Rev Plant Sci 34:237–280. https://doi.org/10.1080/07352689.2014.898450

    Article  CAS  Google Scholar 

  23. Muscolo A, Junker A, Klukas C, Weigelt-Fischer K, Riewe D, Altmann T (2015) Phenotypic and metabolic responses to drought and salinity of four contrasting lentil accessions. J Exp Bot 66:5467–5480. https://doi.org/10.1093/jxb/erv208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Singh D, Singh CK, Taunk J, Sewak R, Tomar S, Chaturvedi AK (2017) Transcriptome analysis of lentil (Lens culinaris Medikus) in response to seedling drought stress. BMC Genomics 18:206. https://doi.org/10.1186/s12864-017-3596-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sinha R, Sharma TR, Singh AK (2019) Validation of reference genes for qRT-PCR data normalisation in lentil (Lens culinaris) under leaf developmental stages and abiotic stresses. Physiol Mol Biol Plants 25:123–134. https://doi.org/10.1007/s12298-018-0609-1

    Article  CAS  PubMed  Google Scholar 

  26. Guidi L, Lo Piccolo E, Landi M (2019) Chlorophyll fluorescence, photoinhibition and abiotic stress: does it make any difference the fact to be a C3 or C4 species? Front Plant Sci 10:1–11. https://doi.org/10.3389/fpls.2019.00174

    Article  Google Scholar 

  27. Barrs HD, Weatherley PE (1962) A re-examination of the relative turgidity techniques for estimating water deficits in leaves. Aust J Biol Sci 15:413–428. https://doi.org/10.1071/BI9620413

    Article  Google Scholar 

  28. Kautsky H, Apple W, Amann H (1960) Chlorophyll fluorescence and carbon assimilation. Part XIII. The fluorescence and the photochemistry of plants. Biochem Z 332:277–292

    CAS  PubMed  Google Scholar 

  29. Demidchik V, Straltsova D, Medvedev SS, Pozhvanov GA, Sokolik A, Yurin V (2014) Stress-induced electrolyte leakage: the role of K+-permeable channels and involvement in programmed cell death and metabolic adjustment. J Exp Bot 65:1259–1270. https://doi.org/10.1093/jxb/eru004

    Article  CAS  PubMed  Google Scholar 

  30. Singh J, Thakur JK (2018) Photosynthesis and abiotic stress in plants. In: Vats S (ed) Biotic and abiotic stress tolerance in plants. Springer Nature, Singapore. https://doi.org/10.1007/978-981-10-9029-5

    Chapter  Google Scholar 

  31. Yoshiba Y, Kiyosue T, Katagiri T, Ueda H, Mizoguchi T, Yamaguchi-Shinozaki K et al (1995) Correlation between the induction of a gene for d 1-pyrroline-5-carboxylate synthetase and the accumulation of proline in Arabidopsis thaliana under osmotic stress. Plant J 7:751–760. https://doi.org/10.1046/j.1365-313X.1995.07050751.x

    Article  CAS  PubMed  Google Scholar 

  32. Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genomics 2014:701596. https://doi.org/10.1155/2014/701596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Krasensky J, Jonak C (2015) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot 63:1593–1608. https://doi.org/10.1093/jxb/err460

    Article  CAS  Google Scholar 

  34. Hossain MS, Dietz K (2016) Tuning of redox regulatory mechanisms, reactive oxygen species and redox homeostasis under salinity stress. Front Plant Sci 7:548. https://doi.org/10.3389/fpls.2016.00548

    Article  PubMed  PubMed Central  Google Scholar 

  35. Tattini M, Landi M, Brunetti C, Giordano C, Remorini D, Gould KS, Guidi L (2014) Epidermal coumaroyl anthocyanins protect sweet basil against excess light stress: multiple consequences of light attenuation. Physiol Plant 152:585–598. https://doi.org/10.1111/ppl.12201

    Article  CAS  PubMed  Google Scholar 

  36. Nakabayashi R, Yonekura-Sakakibara K, Urano K, Suzuki M, Yamada Y, Nishizawa T et al (2014) Enhancement of oxidative and drought tolerance in Arabidopsis by over accumulation of antioxidant flavonoids. Plant J 77:367–379. https://doi.org/10.1111/tpj.12388

    Article  CAS  PubMed  Google Scholar 

  37. Pourcel L, Irani NG, Koo AJ, Bohorquez-Restrepo A, Howe GA, Grotewold E (2013) A chemical complementation approach reveals genes and interactions of flavonoids with other pathways. Plant J 74:383–397. https://doi.org/10.1111/tpj.12129

    Article  CAS  PubMed  Google Scholar 

  38. Howitz KT, Sinclair DA (2008) Xenohormesis: sensing the chemical cues of other species. Cell 133:387–391. https://doi.org/10.1016/j.cell.2008.04.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gill SS, Tuteja N (2010) Plant physiology and biochemistry reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930. https://doi.org/10.1016/j.plaphy.2010.08.016

    Article  CAS  PubMed  Google Scholar 

  40. Mustafiz A, Singh AK, Pareek A, Sopory SK, Singla-Pareek SL (2011) Genome-wide analysis of rice and Arabidopsis identifies two glyoxalase genes that are highly expressed in abiotic stresses. Funct Integr Genomics 11:293–305. https://doi.org/10.1007/s10142-010-0203-2

    Article  CAS  PubMed  Google Scholar 

  41. Hoque TS, Hossain MA, Mostofa MG, Burritt DJ (2016) Methylglyoxal: an emerging signaling molecule in plant abiotic stress responses and tolerance. Front Plant Sci 7:1–11. https://doi.org/10.3389/fpls.2016.01341

    Article  Google Scholar 

  42. Kaur C, Singla-pareek SL, Sopory SK (2014) Glyoxalase and methylglyoxal as biomarkers for plant stress tolerance. Crit Rev Plant Sci 33:429–456. https://doi.org/10.1080/07352689.2014.904147

    Article  CAS  Google Scholar 

  43. Bown AW, Shelp BJ (1997) The metabolism and functions of y-Aminobutyric acid. Plant Physiol 1:1–5. https://doi.org/10.1104/pp.115.1.1

    Article  Google Scholar 

  44. Narsai R, Rocha M, Geigenberger P, Whelan J, Van Dongen JT (2011) Comparative analysis between plant species of transcriptional and metabolic responses to hypoxia. New Phytol 190:472–487. https://doi.org/10.1111/j.1469-8137.2010.03589.x

    Article  CAS  PubMed  Google Scholar 

  45. Bouchereau A, Aziz A, Larher F (1999) Polyamines and environmental challenges: recent development. Plant Sci 140:103–125. https://doi.org/10.1016/S0168-9452(98)00218-0

    Article  CAS  Google Scholar 

  46. Minocha R, Majumdar R, Minocha SC (2014) Polyamines and abiotic stress in plants: a complex relationship. Front Plant Sci 5:1–17. https://doi.org/10.3389/fpls.2014.00175

    Article  Google Scholar 

  47. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410. https://doi.org/10.1016/S1360-1385(02)02312-9

    Article  CAS  PubMed  Google Scholar 

  48. Green MR, Sambrook J (2014) Molecular cloning, a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  49. Meidner H, Mansfieid TA (1968) Physiology of stomata. McGraw Hill, New York

    Google Scholar 

  50. Wolf DD, Carson EW, Parrish DJ (1979) A replica method of determining stomatal and epidermal cell intensity. J Agro Edu 8:52–54

    Google Scholar 

  51. Williams CH, Twine V (1960) In: Peach K, Tracey MV (eds) Modern methods of plant analysis. Springer-Verlag Berlin, Berlin/Heidelberg, pp 3–5

    Google Scholar 

  52. Hiscox JD, Israelstam GF (1979) A method for the extraction of chlorophyll from leaf tissue without maceration. Can J Bot 57:1332–1334. https://doi.org/10.1139/b79-163

    Article  CAS  Google Scholar 

  53. DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356. https://doi.org/10.1021/ac60111a01

    Article  CAS  Google Scholar 

  54. Kim J, Yi H, Choi G, Shin B, Song P, Choi G (2003) Functional characterization of phytochrome interacting factor 3 in phytochrome mediated light signal transduction. Plant Cell 15:23992407. https://doi.org/10.1105/tpc.014498

    Article  CAS  Google Scholar 

  55. Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water - stress studies. Plant Soil 39:205–207. https://doi.org/10.1007/BF00018060

    Article  CAS  Google Scholar 

  56. Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198. https://doi.org/10.1016/0003-9861(68)90654-1

    Article  CAS  PubMed  Google Scholar 

  57. Guijin Z, Bown AW (1997) The rapid determination of γ amino-butyric acid. Phytochemistry 44:1007–1009. https://doi.org/10.1016/S0031-9422(96)00626-7

    Article  Google Scholar 

  58. Duan JJ, Li J, Guo S, Kang Y (2008) Exogenous spermidine affects polyamine metabolism in salinity-stressed Cucumis sativus roots and enhances short-term salinity tolerance. J Plant Physiol 165:1620–1635. https://doi.org/10.1016/j.jplph.2007.11.006

    Article  CAS  PubMed  Google Scholar 

  59. Yadav SK, Singla-Pareek SL, Reddy MK, Sopory SK (2005) Transgenic tobacco plants overexpressing glyoxalase enzymes resist an increase in methylglyoxal and maintain higher reduced glutathione levels under salinity stress. FEBS Lett 579:6265–6271. https://doi.org/10.1016/j.febslet.2005.10.006

    Article  CAS  PubMed  Google Scholar 

  60. Ainsworth EA, Gillespie KM (2007) Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nat Protoc 2:875–877. https://doi.org/10.1038/nprot.2007.102

    Article  CAS  PubMed  Google Scholar 

  61. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1006/abio.1976.9999

    Article  CAS  PubMed  Google Scholar 

  62. Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287. https://doi.org/10.1016/0003-2697(71)90370-8

    Article  CAS  PubMed  Google Scholar 

  63. Luck H (1974) In: Bergmeyer HU, Bergmeyer J, Grassl M (eds) Methods in enzymatic analysis. Academic, New York, p 885

    Google Scholar 

  64. Schaedle M, Bassham JA (1977) Chloroplast glutathione reductase. Plant Physiol 59:1011–1012. https://doi.org/10.1104/pp.59.5.1011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880. https://doi.org/10.1093/oxfordjournals.pcp.a076232

    Article  CAS  Google Scholar 

  66. Putter J (1974) Peroxidase. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Verlag Chemie, Weinhan, pp 685–690

    Chapter  Google Scholar 

  67. Hossain M, Nakano Y, Asada K (1984) Monodehydroascorbate reductase in spinach chloroplasts and its participation in the regeneration of ascorbate for scavenging hydrogen peroxide. Plant Cell Physiol 25:385–395. https://doi.org/10.1093/oxfordjournals.pcp.a076726

    Article  CAS  Google Scholar 

  68. Dalton DA, Russell SA, Hanus FJ, Pascoet GA, Evans HJ (1986) Enzymatic reactions of ascorbate and glutathione that prevent peroxide damage in soybean root nodules. Proc Natl Acad Sci U S A 83:3811–3815. https://doi.org/10.1073/pnas.83.11.3811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Earnshaw MJ (1993) Stress indicators: electrolyte leakage. In: Hendry GAF, Grime JP (eds) Methods in comparative ecology. Chapman and Hall, London, pp 152–154

    Google Scholar 

  70. Conde A, Chaves MM, Geros H (2011) Membrane transport, sensing and signaling in plant adaptation to environmental stress. Plant Cell Physiol 52:1583–1602. https://doi.org/10.1093/pcp/pcr107

    Article  CAS  PubMed  Google Scholar 

  71. Kotak S, Larkindale J, Lee U, von Koskull-Doring P, Vierling E, Scharf KD (2007) Complexity of the heat stress response in plants. Curr Opin Plant Biol 10:310–316. https://doi.org/10.1016/j.pbi.2007.04.011

    Article  CAS  PubMed  Google Scholar 

  72. Ristic Z, Bukovnik U, Prasad PVV (2007) Correlation between heat stability of thylakoid membranes and loss of chlorophyll in winter wheat under heat stress. Crop Sci 47:2067–2073. https://doi.org/10.2135/cropsci2006.10.0674

    Article  CAS  Google Scholar 

  73. Djanaguiraman M, Prasad PVV, Seppanen M (2010) Selenium protects sorghum leaves from oxidative damage under high temperature stress by enhancing antioxidant defense system. Plant Physiol Biochem 48:999–1007. https://doi.org/10.1016/j.plaphy.2010.09.009

    Article  CAS  PubMed  Google Scholar 

  74. Monakhova OF, Chernyadev II (2002) Protective role of kartolin-4 in wheat plants exposed to soil drought. Appl Biochem Microbiol 38:373–380. https://doi.org/10.1023/A:1016243424428

    Article  CAS  Google Scholar 

  75. Gunasekera D, Berkowitz GA (1992) Evaluation of contrasting cellular-level acclimation responses to leaf water deficits in three wheat genotypes. Plant Sci 86:1–12. https://doi.org/10.1016/0168-9452(92)90173-J

    Article  Google Scholar 

  76. Moussa HR, Abdel-Aziz SM (2008) Comparative response of drought tolerant and drought sensitive maize genotypes to water stress. Aust J Crop Sci 1:31–36

    Google Scholar 

  77. Thameur A, Lachiheb B, Ferchichi A (2012) Drought effect on growth, gas exchange and yield in two strains of local barley Ardhaoui, under water deficit conditions in southern Tunisia. J Environ Manag 113:495–500. https://doi.org/10.1016/j.jenvman.2012.05.02

    Article  CAS  Google Scholar 

  78. Koingshofer HL, Oppert HG (2015) Regulation of invertase activity in different root zones of wheat (Triticum aestivum L.) seedlings in the course of osmotic adjustment under water deficit conditions. J Plant Physiol 183:130–137. https://doi.org/10.1016/j.jplph.2015.06.005

    Article  CAS  Google Scholar 

  79. Zhou Q, Yu BJ (2009) Accumulation of inorganic and organic osmolytes and their role in osmotic adjustment in NaCl-stresses vetiver grass seedlings. Russ J Plant Physiol 56:678–685. https://doi.org/10.1134/S1021443709050148

    Article  CAS  Google Scholar 

  80. Farmer EE, Davoine C (2007) Reactive electrophile species. Curr Opin Plant Biol 10:380–386. https://doi.org/10.1016/j.pbi.2007.04.019

    Article  CAS  PubMed  Google Scholar 

  81. Deng Y, Xu L, Zeng X, Li Z, Qin B, He N (2010) New perspective of GABA as an inhibitor of formation of advanced lipoxidation end-products: it’s interaction with malondialdehyde. J Biomed Nanotechnol 6:318–324. https://doi.org/10.1166/jbn.2010.1130

    Article  CAS  PubMed  Google Scholar 

  82. Moller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481. https://doi.org/10.1146/annurev.arplant.58.032806.103946

    Article  CAS  PubMed  Google Scholar 

  83. Munne-Bosch S, Jubany-Mari T, Alegre L (2001) Drought induced senescence is characterised by a loss of antioxidant defences in chloroplasts. Plant Cell Environ 24:1319–1327. https://doi.org/10.1046/j.1365-3040.2001.00794.x

    Article  CAS  Google Scholar 

  84. Sultan MARF, Hui L, Yang LJ, Xian ZH (2012) Assessment of drought tolerance of some Triticum L. species through physiological indices. Czech J gen. Czech J Genet Plant Breed 48:178–184. https://doi.org/10.17221/21/2012-CJGPB

    Article  Google Scholar 

  85. Siddique MH, Al-Khaishany MY, Al-Qutami MA, Al-Whaibi MH, Grover A, Ali HM et al (2015) Responses of different genotypes of Faba bean plant to drought stress. Int J Mol Sci 16:10214–10227. https://doi.org/10.3390/ijms160510214

    Article  CAS  Google Scholar 

  86. Moran JF, Becana M, Iturbe-Ormaetxe I, Frechilla S, Klucas RV, Aparicio-Trejo P (1994) Drought induces oxidative stress in pea plants. Planta 194:346–352. https://doi.org/10.1007/BF00197534

    Article  CAS  Google Scholar 

  87. Farooq M, Aziz T, Basra SMA, Cheema MA, Rehman H (2008) Chilling tolerance in hybrid maize induced by seed priming with salicylic acid. J Agron Crop Sci 194:161–168. https://doi.org/10.1111/j.1439-037X.2008.00300.x

    Article  CAS  Google Scholar 

  88. Anjum SA, Wang LC, Farooq M, Hussain M, Xue LL, Zou CM (2011) Brassinolide application improves the drought tolerance in maize through modulation of enzymatic antioxidants and leaf gas exchange. J Agron Crop Sci 197:177–185. https://doi.org/10.1111/j.1439-037X.2010.00459.x

    Article  CAS  Google Scholar 

  89. Sharma P, Dubey RS (2005) Drought induces oxidative stress and enhances the activities of antioxidant enzyme in growing rice seedling. Plant Growth Regul 46:209–221. https://doi.org/10.1007/s10725-005-0002-2

    Article  CAS  Google Scholar 

  90. Pang CH, Li K, Wang BS (2011) Overexpression of SsCHLAPXs confers protection against oxidative stress induced by high light in transgenic Arabidopsis thaliana. Physiol Plant 143:355–366. https://doi.org/10.1111/j.1399-3054.2011.01515.x

    Article  CAS  PubMed  Google Scholar 

  91. Cao S, Du XH, Li LH, Liu YD, Zhang L, Pan X et al (2017) Overexpression of Populus tomentosa cytosolic ascorbate peroxidase enhances abiotic stress tolerance in tobacco plants. Russ J Plant Physiol 64:224–234. https://doi.org/10.1134/s1021443717020029

    Article  CAS  Google Scholar 

  92. Roxas VP, Lodhi SA, Garrett DK, Mahan JR, Allen RD (2000) Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/glutathione peroxidase. Plant Cell Physiol 41:1229–1234. https://doi.org/10.1093/pcp/pcd051

    Article  CAS  PubMed  Google Scholar 

  93. Qi YC, Liu WQ, Qiu LY, Zhang SM, Ma L, Zhang H (2010) Overexpression of glutathione S-transferase gene increases salt tolerance of Arabidopsis. Russ J Plant Physiol 57:233–240. https://doi.org/10.1134/s102144371002010x

    Article  CAS  Google Scholar 

  94. Kumar S, Trivedi PK (2018) Glutathione S-transferases: role in combating abiotic stresses including arsenic detoxification in plants. Front Plant Sci 9:751. https://doi.org/10.3389/fpls.2018.00751

    Article  PubMed  PubMed Central  Google Scholar 

  95. Shafi A, Chauhan R, Gill T, Swarnkar MK, Sreenivasulu Y, Kumar S et al (2015) Expression of SOD and APX genes positively regulates secondary cell wall biosynthesis and promotes plant growth and yield in Arabidopsis under salt stress. Plant Mol Biol 87:615–631. https://doi.org/10.1007/s11103-015-0301-6

    Article  CAS  PubMed  Google Scholar 

  96. Shafi A, Gill T, Sreenivasulu Y, Kumar S, Ahuja PS, Singh AK (2015) Improved callus induction, shoot regeneration, and salt stress tolerance in Arabidopsis overexpressing superoxide dismutase from Potentilla atrosanguinea. Protoplasma 252:41–45. https://doi.org/10.1007/s00709-014-0653-9

    Article  CAS  PubMed  Google Scholar 

  97. Shafi A, Gill T, Zahoor I, Ahuja PS, Sreenivasulu Y, Kumar S et al (2019) Ectopic expression of SOD and APX genes in Arabidopsis alters metabolic pools and genes related to secondary cell wall cellulose biosynthesis and improve salt tolerance. Mol Biol Rep 46:1985–2002. https://doi.org/10.1007/s11033-019-04648-3

    Article  CAS  PubMed  Google Scholar 

  98. Shafi A, Pal AK, Sharma V, Kalia S, Kumar S, Ahuja PS, Singh AK (2017) Transgenic potato plants overexpressing SOD and APX exhibit enhanced lignification and starch biosynthesis with improved salt stress tolerance. Plant Mol Biol Rep 35:504–518. https://doi.org/10.1007/s11105-017-1041-3

    Article  CAS  Google Scholar 

  99. Singla-Pareek SL, Reddy MK, Sopory SK (2003) Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance. Proc Natl Acad Sci U S A 100:14672–14677. https://doi.org/10.1073/pnas.2034667100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Singla-Pareek SL, Yadav SK, Pareek A, Reddy MK, Sopory SK (2006) Transgenic tobacco overexpressing glyoxalase pathway enzymes grow and set viable seeds in zinc-spiked soils. Plant Physiol 140:613–623. https://doi.org/10.1104/pp.105.073734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Gupta BK, Sahoo KK, Ghosh A, Tripathi AK, Anwar K, Das P et al (2018) Manipulation of glyoxalase pathway confers tolerance to multiple stresses in rice. Plant Cell Environ 41:1186–1200. https://doi.org/10.1111/pce.12968

    Article  CAS  PubMed  Google Scholar 

  102. Yoshiba Y, Nanjo T, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Stress-responsive and developmental regulation of D1-pyrroline-5-carboxylate synthetase 1 (P5CS1) gene expression in Arabidopsis thaliana. Biochem Biophys Res Commun 261:766–772. https://doi.org/10.1006/bbrc.1999.1112

    Article  CAS  PubMed  Google Scholar 

  103. Renault H, El-Amrani A, Berger A, Mouille G, Soubigou Taconnat L, Bouchereau A et al (2013) γ-Aminobutyric acid transaminase deficiency impairs central carbon metabolism and leads to cell wall defects during salt stress in Arabidopsis roots. Plant Cell Environ 36:1009–1018. https://doi.org/10.1111/pce.12033

    Article  CAS  PubMed  Google Scholar 

  104. Muscolo A, Sidari M, Anastasi U, Santonoceto C, Maggio A (2014) Effect of drought stress on germination of four lentil genotypes. J Plant Interact 9:354–363. https://doi.org/10.1080/17429145.2013.835880

    Article  CAS  Google Scholar 

  105. Szabadous L, Savoure A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97. https://doi.org/10.1016/j.tplants.2009.11.009

    Article  CAS  Google Scholar 

  106. Yancey PH (2005) Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol 208:2819–2830. https://doi.org/10.1242/jeb.01730

    Article  CAS  PubMed  Google Scholar 

  107. Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216. https://doi.org/10.1016/j.envexpbot.2005.12.006

    Article  CAS  Google Scholar 

  108. Liu JH, Kitashiba H, Wang J, Ban Y, Moriguchi T (2007) Polyamines and their ability to provide environmental stress tolerance to plants. Plant Biotechnol 24:117–126. https://doi.org/10.5511/plantbiotechnology.24.117

    Article  CAS  Google Scholar 

  109. Alcázar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C et al (2010) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231:1237–1249. https://doi.org/10.1007/s00425-010-1130-0

    Article  CAS  PubMed  Google Scholar 

  110. Espasandin FD, Maiale SJ, Calzadilla P, Ruiz OA, Sansberro PA (2014) Transcriptional regulation of 9-cis-epoxycarotenoid dioxygenase (NCED) gene by putrescine accumulation positively modulates ABA synthesis and drought tolerance in Lotus tenuis plants. Plant Physiol Biochem 76:29–35. https://doi.org/10.1016/j.plaphy.2013.12.018

    Article  CAS  PubMed  Google Scholar 

  111. Nayyar H, Satwinder K, Kumar S, Singh KJ, Dhir KK (2005) Involvement of polyamines in the contrasting sensitivity of chickpea (Cicer arietinum L.) and soybean (Glycine max (L.) Merrill.) to water deficit stress. Bot Bull Acad Sin Taipei 46:333–338

    CAS  Google Scholar 

  112. Yong B, Xie H, Li Z, Li Y-P, Zhang Y, Nie G et al (2017) Exogenous application of GABA improves PEG-induced drought tolerance positively associated with GABA-shunt, polyamines, and proline metabolism in white clover. Front Physiol 8:1107. https://doi.org/10.3389/fphys.2017.01107

    Article  PubMed  PubMed Central  Google Scholar 

  113. Bouche N, Fromm H (2004) GABA in plants: just a metabolite? Trends Plant Sci 9:110–115. https://doi.org/10.1016/j.tplants.2004.01.006

    Article  CAS  PubMed  Google Scholar 

  114. Xing SG, Jun YB, Hau ZW, Liang LY (2007) Higher accumulation of γ-aminobutyric acid induced by salt stress through stimulating the activity of diamine oxidases in Glycine max (L.) Merr. Roots. Plant Physiol Biochem 45:560–566. https://doi.org/10.1016/j.plaphy.2007.05.007

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

AKS acknowledges funding support by Indian Council of Agricultural Research, New Delhi in the form of projects IXX12585 and IXX12644;Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Government of India for the project under “Scheme for Young Scientists” (SB/YS/LS-255/2013). RS acknowledges DST-SERB for the National-Postdoctoral Fellowship (PDF/2016/000924), and DST, Govt. of India for funding under the Women Scientists Scheme-A (SR/WOS-A/LS-160/2018). MB acknowledges University Grant Commission (UGC), New Delhi for JRF.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sinha, R., Bala, M., Kumar, M., Sharma, T.R., Singh, A.K. (2020). Methods for Screening Legume Crops for Abiotic Stress Tolerance through Physiological and Biochemical Approaches. In: Jain, M., Garg, R. (eds) Legume Genomics. Methods in Molecular Biology, vol 2107. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0235-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0235-5_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0234-8

  • Online ISBN: 978-1-0716-0235-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics