Skip to main content

ACB-PCR Quantification of Low-Frequency Hotspot Cancer-Driver Mutations

  • Protocol
  • First Online:
Molecular Toxicology Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2102))

Abstract

Allele-specific competitive blocker PCR (ACB-PCR) is a sensitive and quantitative approach for the selective amplification of a specific base substitution. Using the ACB-PCR technique, hotspot cancer-driver mutations (tumor-relevant mutations in oncogenes and tumor suppressor genes, which confer a selective growth advantage) are being developed as quantitative biomarkers of cancer risk. ACB-PCR employs a mutant-specific primer (with a 3′-penultimate mismatch relative to the mutant DNA sequence, but a double 3′-terminal mismatch relative to the wild-type DNA sequence) to selectively amplify rare mutant DNA molecules. A blocker primer having a non-extendable 3′-end and a 3′-penultimate mismatch relative to the wild-type DNA sequence, but a double 3′-terminal mismatch relative to the mutant DNA sequence is included in ACB-PCR to selectively repress amplification from abundant wild-type molecules. Consequently, ACB-PCR can quantify the level of a single base pair substitution mutation in a DNA population when present at a mutant:wild-type ratio of 1 × 10−5 or greater. Quantification of rare mutant alleles is achieved by parallel analysis of unknown samples and mutant fraction (MF) standards (defined mixtures of mutant and wild-type DNA sequences). The ability to quantify specific mutations with known association to cancer has several important applications in evaluating the carcinogenic potential of chemical exposures in rodent models. Further, the measurement of cancer-driver mutant subpopulations is important for precision cancer treatment (selecting the most appropriate targeted therapy and predicting the development of therapeutic resistance). This chapter provides a step-by-step description of the ACB-PCR methodology as it has been used to measure human PIK3CA codon 1047, CAT→CGT (H1047R) mutation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cha RS, Zarbl H, Keohavong P, Thilly WG (1992) Mismatch amplification mutation assay (MAMA): application to the c-H-ras gene. PCR Methods Appl 2(1):14–20

    Article  CAS  PubMed  Google Scholar 

  2. Orou A, Fechner B, Utermann G, Menzel HJ (1995) Allele-specific competitive blocker PCR: A one-step method with applicability to pool screening. Hum Mutat 6(2):163–169

    Article  CAS  PubMed  Google Scholar 

  3. Kwok S, Chang SY, Sninsky JJ, Wang A (1994) A guide to the design and use of mismatched and degenerate primers. PCR Methods Appl 3(4):S39–S47

    Article  CAS  PubMed  Google Scholar 

  4. Parsons BL, Heflich RH (1998) Detection of a mouse H-ras codon 61 mutation using a modified allele-specific competitive blocker PCR genotypic selection method. Mutagenesis 13(6):581–588

    Article  CAS  PubMed  Google Scholar 

  5. Parsons BL, McKinzie PB, Heflich RH (2005) Allele-specific competitive blocker-PCR detection of rare base substitution. In: Keohavong P, Grant SG (eds) Methods in molecular biology, molecular toxicology protocols, vol 291. Humana Press Inc., Totawa, NJ, pp 235–245

    Chapter  Google Scholar 

  6. Myers MB, McKinzie PB, Wang Y, Meng F, Parsons BL (2014) ACB-PCR quantification of somatic oncomutation. Methods Mol Biol 1105:345–363

    Article  CAS  PubMed  Google Scholar 

  7. Parsons BL, Myers MB, Meng F, Wang Y, McKinzie PB (2010) Oncomutations as biomarkers of cancer risk. Environ Mol Mutagen 51(8-9):836–850

    Article  CAS  PubMed  Google Scholar 

  8. Meng F, Knapp GW, Green T, Ross JA, Parsons BL (2010) K-Ras mutant fraction in A/J mouse lung increases as a function of benzo[a]pyrene dose. Environ Mol Mutagen 51(2):146–155

    CAS  PubMed  Google Scholar 

  9. Chen T, Mittelstaedt RA, Beland FA, Heflich RH, Moore MM, Parsons BL (2005) 4-Aminobiphenyl induces liver DNA adducts in both neonatal and adult mice but induces liver mutations only in neonatal mice. Int J Cancer 117(2):182–187

    Article  CAS  PubMed  Google Scholar 

  10. McKinzie PB, Delongchamp RR, Chen T, Parsons BL (2006) ACB-PCR measurement of K-ras codon 12 mutant fractions in livers of Big Blue(registered trademark) rats treated with N-hydroxy-2-acetylaminofluorene. Mutagenesis 21(6):391–397

    Article  CAS  PubMed  Google Scholar 

  11. Parsons BL, Beland FA, Von Tungeln LS, Delongchamp RR, Fu PP, Heflich RH (2005) Levels of 4-aminobiphenyl-induced somatic H-ras mutation in mouse liver DNA correlate with potential for liver tumor development. Mol Carcinog 42(4):193–201

    Article  CAS  PubMed  Google Scholar 

  12. Verkler TL, Delongchamp RR, Miller BJ, Webb PJ, Howard PC, Parsons BL (2008) Simulated solar light-induced p53 mutagenesis in SKH-1 mouse skin: A dose-response assessment. Mol Carcinog 47(8):599–607

    Article  CAS  PubMed  Google Scholar 

  13. Wang Y, Mei N, Chen T, Parsons BL (2009) ACB-PCR measurement of K-Ras codon 12 GAT mutation in rat liver and kidney exposed to aristolochic acid. Environ Mol Mutagen 50(7):570

    Google Scholar 

  14. McKinzie PB, Parsons BL (2011) Accumulation of K-Ras codon 12 mutations in the F344 rat distal colon following azoxymethane exposure. Environ Mol Mutagen 52(5):409–418

    Article  CAS  PubMed  Google Scholar 

  15. Meng F, Bermudez E, McKinzie PB, Andersen ME, Clewell HJ 3rd, Parsons BL (2010) Measurement of tumor-associated mutations in the nasal mucosa of rats exposed to varying doses of formaldehyde. Regul Toxicol Pharmacol 57(2-3):274–283

    Article  CAS  PubMed  Google Scholar 

  16. Myers MB, Banda M, McKim KL, Wang Y, Powell MJ, Parsons BL (2016) Breast cancer heterogeneity examined by high-sensitivity quantification of PIK3CA, KRAS, HRAS, and BRAF mutations in normal breast and ductal carcinomas. Neoplasia 18(4):253–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Myers MB, McKim KL, Meng F, Parsons BL (2015) Low-frequency KRAS mutations are prevalent in lung adenocarcinomas. Pers Med 12(2):83–98

    Article  CAS  Google Scholar 

  18. Myers MB, McKim KL, Parsons BL (2014) A subset of papillary thyroid carcinomas contain KRAS mutant subpopulations at levels above normal thyroid. Mol Carcinog 53(2):159–167

    Article  CAS  PubMed  Google Scholar 

  19. Parsons BL, Marchant-Miros KE, Delongchamp RR, Verkler TL, Patterson TA, McKinzie PB, Kim LT (2010) ACB-PCR quantification of K-RAS codon 12 GAT and GTT mutant fraction in colon tumor and non-tumor tissue. Cancer Investig 28(4):364–375

    Article  CAS  Google Scholar 

  20. Parsons BL, McKim KL, Myers MB (2017) Variation in organ-specific PIK3CA and KRAS mutant levels in normal human tissues correlates with mutation prevalence in corresponding carcinomas. Environ Mol Mutagen 58(7):466–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Banda M, McKim KL, Haber LT, MacGregor JA, Gollapudi BB, Parsons BL (2015) Quantification of Kras mutant fraction in the lung DNA of mice exposed to aerosolized particulate vanadium pentoxide by inhalation. Mutat Res Genet Toxicol Environ Mutagen 789-790:53–60

    Article  CAS  PubMed  Google Scholar 

  22. Banda M, Recio L, Parsons BL (2013) ACB-PCR measurement of spontaneous and furan-induced H-ras codon 61 CAA to CTA and CAA to AAA mutation in B6C3F1 mouse liver. Environ Mol Mutagen 54(8):659–667

    Article  CAS  PubMed  Google Scholar 

  23. McKinzie PB, McKim KL, Pearce MG, Bishop ME, Parsons BL (2018) Lifespan Kras mutation levels in lung and liver of B6C3F1 mice. Environ Mol Mutagen 59(8):715–721

    Article  CAS  PubMed  Google Scholar 

  24. Meng F, Wang Y, Myers MB, Wong BA, Gross EA, Clewell HJ 3rd, Dodd DE, Parsons BL (2011) p53 codon 271 CGT to CAT mutant fraction does not increase in nasal respiratory and olfactory epithelia of rats exposed to inhaled naphthalene. Mutat Res 721(2):199–205

    Article  CAS  PubMed  Google Scholar 

  25. O'Brien TJ, Ding H, Suh M, Thompson CM, Parsons BL, Harris MA, Winkelman WA, Wolf JC, Hixon JG, Schwartz AM et al (2013) Assessment of K-Ras mutant frequency and micronucleus incidence in the mouse duodenum following 90-days of exposure to Cr(VI) in drinking water. Mutat Res 754(1-2):15–21

    Article  CAS  PubMed  Google Scholar 

  26. Parsons BL, Culp SJ, Manjanatha MG, Heflich RH (2002) Occurrence of H-ras codon 61 CAA to AAA mutation during mouse liver tumor progression. Carcinogenesis 23(6):943–948

    Article  CAS  PubMed  Google Scholar 

  27. Parsons BL, Delongchamp RR, Beland FA, Heflich RH (2006) Levels of H-ras codon 61 CAA to AAA mutation: response to 4-ABP-treatment and Pms2-deficiency. Mutagenesis 21(1):29–34

    Article  CAS  PubMed  Google Scholar 

  28. Parsons BL, Manjanatha MG, Myers MB, McKim KL, Shelton SD, Wang Y, Gollapudi BB, Moore NP, Haber LT, Moore MM (2013) Temporal changes in K-ras mutant fraction in lung tissue of big blue B6C3F(1) mice exposed to ethylene oxide. Toxicol Sci 136(1):26–38

    Article  CAS  PubMed  Google Scholar 

  29. Verkler TL, Couch LH, Howard PC, Parsons BL (2005) Quantifying levels of p53 mutation in mouse skin tumors. Environ Mol Mutagen 45(5):427–434

    Article  CAS  PubMed  Google Scholar 

  30. Verkler TL, Delongchamp RR, Couch LH, Miller BJ, Warbritton A, Mellick PW, Howard PC, Parsons BL (2008) Populations of p53 codon 270 CGT to TGT mutant cells in SKH-1 mouse skin tumors induced by simulated solar light. Mol Carcinog 47(11):822–834

    Article  CAS  PubMed  Google Scholar 

  31. Wang Y, Arlt VM, Roufosse CA, McKim KL, Myers MB, Phillips DH, Parsons BL (2012) ACB-PCR measurement of H-ras codon 61 CAA-->CTA mutation provides an early indication of aristolochic acid I carcinogenic effect in tumor target tissues. Environ Mol Mutagen 53(7):495–504

    Article  CAS  PubMed  Google Scholar 

  32. Wang Y, Meng F, Arlt VM, Mei N, Chen T, Parsons BL (2011) Aristolochic acid-induced carcinogenesis examined by ACB-PCR quantification of H-Ras and K-Ras mutant fraction. Mutagenesis 26(5):619–628

    Article  PubMed  CAS  Google Scholar 

  33. Parsons BL, Myers MB (2013) Personalized cancer treatment and the myth of KRAS wild-type colon tumors. Discov Med 15(83):259–267

    PubMed  Google Scholar 

  34. Myers MB, McKim KL, Banda M, George NI, Parsons BL (2019) Low-frequency mutational heterogeneity of invasive ductal carcinoma subtypes: information to direct precision oncology. Int J Mol Sci 20(5):E1011

    Article  PubMed  CAS  Google Scholar 

  35. Wang HL, Lopategui J, Amin MB, Patterson SD (2010) KRAS mutation testing in human cancers: The pathologist's role in the era of personalized medicine. Adv Anat Pathol 17(1):23–32

    Article  CAS  PubMed  Google Scholar 

  36. Parsons BL, Meng F (2009) K-RAS mutation in the screening, prognosis and treatment of cancer. Biomark Med 3(6):757–769

    Article  CAS  PubMed  Google Scholar 

  37. Myers MB, Wang Y, McKim KL, Parsons BL (2012) Hotspot oncomutations: implications for personalized cancer treatment. Expert Rev Mol Diagn 12(6):603–620

    Article  CAS  PubMed  Google Scholar 

  38. Catalogue of Somatic Mutations in Cancer (v90). Available online: https://cancer.sanger.ac.uk/cosmic. accessed on November 15, (2019).

    Google Scholar 

  39. Mukohara T (2015) PI3K mutations in breast cancer: prognostic and therapeutic implications. Breast Cancer 7:111–123

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Zardavas D, Te Marvelde L, Milne RL, Fumagalli D, Fountzilas G, Kotoula V, Razis E, Papaxoinis G, Joensuu H, Moynahan ME et al (2018) Tumor PIK3CA Genotype and Prognosis in Early-Stage Breast Cancer: A Pooled Analysis of Individual Patient Data. J Clin Oncol 36(10):981–990

    Article  CAS  PubMed  Google Scholar 

  41. Ibrahim EM, Kazkaz GA, Al-Mansour MM, Al-Foheidi ME (2015) The predictive and prognostic role of phosphatase phosphoinositol-3 (PI3) kinase (PIK3CA) mutation in HER2-positive breast cancer receiving HER2-targeted therapy: a meta-analysis. Breast Cancer Res Treat 152(3):463–476

    Article  CAS  PubMed  Google Scholar 

  42. Razis E, Bobos M, Kotoula V, Eleftheraki AG, Kalofonos HP, Pavlakis K, Papakostas P, Aravantinos G, Rigakos G, Efstratiou I et al (2011) Evaluation of the association of PIK3CA mutations and PTEN loss with efficacy of trastuzumab therapy in metastatic breast cancer. Breast Cancer Res Treat 128(2):447–456

    Article  CAS  PubMed  Google Scholar 

  43. Baldus SE, Schaefer KL, Engers R, Hartleb D, Stoecklein NH, Gabbert HE (2010) Prevalence and heterogeneity of KRAS, BRAF, and PIK3CA mutations in primary colorectal adenocarcinomas and their corresponding metastases. Clin Cancer Res 16(3):790–799

    Article  CAS  PubMed  Google Scholar 

  44. Dieterle CP, Conzelmann M, Linnemann U, Berger MR (2004) Detection of isolated tumor cells by polymerase chain reaction-restriction fragment length polymorphism for K-ras mutations in tissue samples of 199 colorectal cancer patients. Clin Cancer Res 10(2):641–650

    Article  CAS  PubMed  Google Scholar 

  45. Lyons JG, Lobo E, Martorana AM, Myerscough MR (2008) Clonal diversity in carcinomas: its implications for tumour progression and the contribution made to it by epithelial-mesenchymal transitions. Clin Exp Metastasis 25(6):665–677

    Article  PubMed  Google Scholar 

  46. McKinzie PB, Parsons BL (2002) Detection of rare K-ras codon 12 mutations using allele-specific competitive blocker PCR. Mutat Res 517(1-2):209–220

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Rebecca Wynne and Jennifer Shemansky for their critical review of this book chapter. This work was supported by the U.S. Food and Drug Administration’s (FDA), National Center for Toxicological Research (NCTR), and the FDA Office of Women’s Health. This project was supported in part by an appointment to the ORISE Research Participation Program at the NCTR, U.S. FDA, administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and FDA/NCTR. The information in these materials is not a formal dissemination of information by FDA and does not represent agency position or policy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meagan B. Myers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Myers, M.B., McKim, K.L., Wang, Y., Banda, M., Parsons, B.L. (2020). ACB-PCR Quantification of Low-Frequency Hotspot Cancer-Driver Mutations. In: Keohavong, P., Singh, K., Gao, W. (eds) Molecular Toxicology Protocols. Methods in Molecular Biology, vol 2102. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0223-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0223-2_23

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0222-5

  • Online ISBN: 978-1-0716-0223-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics