Skip to main content
Book cover

MAIT Cells pp 283–297Cite as

MAIT Cells in Type 1 Diabetes Mouse Models

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2098))

Abstract

MAIT cells are unconventional T cells expressing a semi-invariant αβ TCR, and they recognize bacterial metabolites via the highly conserved MR1 protein. MAIT cells interact with gut microbiota and literature reports alterations of gut homeostasis in type 1 diabetes (T1D), suggesting the involvement of MAIT cells in T1D. Since NOD mice is a well-established mouse model of T1D, MAIT cells were studied in these mice to evaluate their potential involvement in disease development. This chapter describes the material and methods required to characterize MAIT cells and to determine their function in T1D mouse models.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. McWilliam HEG, Birkinshaw RW, Villadangos JA, McCluskey J, Rossjohn J (2015) MR1 presentation of vitamin B-based metabolite ligands. Curr Opin Immunol 34:28–34

    Article  CAS  Google Scholar 

  2. Ussher JE, Klenerman P, Willberg CB (2014) Mucosal-associated invariant T-cells: new players in anti-bacterial immunity. Front Immunol 5:450

    Article  Google Scholar 

  3. Treiner E, Duban L, Bahram S, Radosavljevic M, Wanner V, Tilloy F et al (2003) Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1. Nature 422(6928):164–169

    Article  CAS  Google Scholar 

  4. Lantz O, Legoux F (2018) MAIT cells: an historical and evolutionary perspective. Immunol Cell Biol 96(6):564–572

    Article  CAS  Google Scholar 

  5. Lamichhane R, Ussher JE (2017) Expression and trafficking of MR1. Immunology 151(3):270–279

    Article  CAS  Google Scholar 

  6. Kjer-Nielsen L, Patel O, Corbett AJ, Le Nours J, Meehan B, Liu L et al (2012) MR1 presents microbial vitamin B metabolites to MAIT cells. Nature 491(7426):717–723

    Article  CAS  Google Scholar 

  7. Kjer-Nielsen L, Corbett AJ, Chen Z, Liu L, Mak JY, Godfrey DI et al (2018) An overview on the identification of MAIT cell antigens. Immunol Cell Biol 96(6):573–587

    Article  CAS  Google Scholar 

  8. Corbett AJ, Eckle SBG, Birkinshaw RW, Liu L, Patel O, Mahony J et al (2014) T-cell activation by transitory neo-antigens derived from distinct microbial pathways. Nature 509(7500):361–365

    Article  CAS  Google Scholar 

  9. Rahimpour A, Koay HF, Enders A, Clanchy R, Eckle SBG, Meehan B et al (2015) Identification of phenotypically and functionally heterogeneous mouse mucosal-associated invariant T cells using MR1 tetramers. J Exp Med 212(7):1095–1108

    Article  CAS  Google Scholar 

  10. Reantragoon R, Corbett AJ, Sakala IG, Gherardin NA, Furness JB, Chen Z et al (2013) Antigen-loaded MR1 tetramers define T cell receptor heterogeneity in mucosal-associated invariant T cells. J Exp Med 210(11):2305–2320

    Article  CAS  Google Scholar 

  11. Rouxel O, Da Silva J, Beaudoin L, Nel I, Tard C, Cagninacci L et al (2017) Cytotoxic and regulatory roles of mucosal-associated invariant T cells in type 1 diabetes. Nat Immunol 18(12):1321–1331

    Article  CAS  Google Scholar 

  12. Soudais C, Samassa F, Sarkis M, Le Bourhis L, Bessoles S, Blanot D et al (2015) In vitro and in vivo analysis of the gram-negative bacteria-derived riboflavin precursor derivatives activating mouse MAIT cells. J Immunol (Baltimore, MD, 1950) 194(10):4641–4649

    Article  CAS  Google Scholar 

  13. Rouxel O, Lehuen A (2018) Mucosal-associated invariant T cells in autoimmune and immune-mediated diseases. Immunol Cell Biol 96(6):618–629

    Article  CAS  Google Scholar 

  14. Touch S, Assmann KE, Aron-Wisnewsky J, Marquet F, Rouault C, Fradet M et al (2018) Mucosal-associated invariant T (MAIT) cells are depleted and prone to apoptosis in cardiometabolic disorders. FASEB J Off Publ Fed Am Soc Exp Biol. https://doi.org/10.1096/fj.201800052RR

    Article  CAS  Google Scholar 

  15. Magalhaes I, Pingris K, Poitou C, Bessoles S, Venteclef N, Kiaf B et al (2015) Mucosal-associated invariant T cell alterations in obese and type 2 diabetic patients. J Clin Invest 125(4):1752–1762

    Article  Google Scholar 

  16. Hegde P, Weiss E, Paradis V, Wan J, Mabire M, Sukriti S et al (2018) Mucosal-associated invariant T cells are a profibrogenic immune cell population in the liver. Nat Commun 9(1):2146

    Article  Google Scholar 

  17. Atkinson MA, Eisenbarth GS, Michels AW (2014) Type 1 diabetes. Lancet Lond Engl 383(9911):69–82

    Article  Google Scholar 

  18. Lehuen A, Diana J, Zaccone P, Cooke A (2010) Immune cell crosstalk in type 1 diabetes. Nat Rev Immunol 10(7):501–513

    Article  CAS  Google Scholar 

  19. Bluestone JA, Herold K, Eisenbarth G (2010) Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature 464(7293):1293–1300

    Article  CAS  Google Scholar 

  20. Anderson MS, Bluestone JA (2005) The NOD mouse: a model of immune dysregulation. Annu Rev Immunol 23:447–485

    Article  CAS  Google Scholar 

  21. Wen L, Ley RE, Volchkov PY, Stranges PB, Avanesyan L, Stonebraker AC et al (2008) Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature 455(7216):1109–1113

    Article  CAS  Google Scholar 

  22. Kostic AD, Gevers D, Siljander H, Vatanen T, Hyötyläinen T, Hämäläinen A-M et al (2015) The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes. Cell Host Microbe 17(2):260–273

    Article  CAS  Google Scholar 

  23. Sapone A, de Magistris L, Pietzak M, Clemente MG, Tripathi A, Cucca F et al (2006) Zonulin upregulation is associated with increased gut permeability in subjects with type 1 diabetes and their relatives. Diabetes 55(5):1443–1449

    Article  CAS  Google Scholar 

  24. Alam C, Bittoun E, Bhagwat D, Valkonen S, Saari A, Jaakkola U et al (2011) Effects of a germ-free environment on gut immune regulation and diabetes progression in non-obese diabetic (NOD) mice. Diabetologia 54(6):1398–1406

    Article  CAS  Google Scholar 

  25. Franciszkiewicz K, Salou M, Legoux F, Zhou Q, Cui Y, Bessoles S et al (2016) MHC class I-related molecule, MR1, and mucosal-associated invariant T cells. Immunol Rev 272(1):120–138

    Article  CAS  Google Scholar 

  26. Koay H-F, Gherardin NA, Enders A, Loh L, Mackay LK, Almeida CF et al (2016) A three-stage intrathymic development pathway for the mucosal-associated invariant T cell lineage. Nat Immunol 17(11):1300–1311

    Article  CAS  Google Scholar 

  27. Le Bourhis L, Martin E, Péguillet I, Guihot A, Froux N, Coré M et al (2010) Antimicrobial activity of mucosal-associated invariant T cells. Nat Immunol 11(8):701–708

    Article  Google Scholar 

  28. Shimamura M, Huang Y-Y, Goji H, Endo S, Migishima R, Yokoyama M (2011) Regulation of immunological disorders by invariant Vα19-Jα33 TCR-bearing cells. Immunobiology 216(3):374–378

    Article  CAS  Google Scholar 

  29. Eckle SBG, Birkinshaw RW, Kostenko L, Corbett AJ, McWilliam HEG, Reantragoon R et al (2014) A molecular basis underpinning the T cell receptor heterogeneity of mucosal-associated invariant T cells. J Exp Med 211(8):1585–1600

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank M. Salou for help in analysis of in vitro MAIT cell activation (5-OP-RU/fecal supernatant dilution); the mouse and Cybio facilities of the Cochin Institute. This work was supported by grants from INSERM, CNRS, Laboratoire d’Excellence consortium Inflamex ANR-11-IDEX-0005-02, and the Fondation pour la Recherche Médicale (FRM grant number DEQ20140329520, EQU201903007779 to A.L.), Fondation Francophone pour la Recherche sur le Diabète to A.L., EFSD/JDRF/Lilly to A.L., Aide aux Jeunes Diabétiques fellowship to I.N., Agence National de la Recherche (ANR-17-CE14-0002-01 Diab1MAIT to A.L.).

Author Contributions: I.N. and L.B. wrote the review and A.L. supervised the writing of the review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnès Lehuen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nel, I., Beaudoin, L., Lehuen, A. (2020). MAIT Cells in Type 1 Diabetes Mouse Models. In: Kaipe, H., Magalhaes, I. (eds) MAIT Cells. Methods in Molecular Biology, vol 2098. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0207-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0207-2_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0206-5

  • Online ISBN: 978-1-0716-0207-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics