Skip to main content

Back-Pyrophosphorylation Assay to Detect In Vivo InsP7-Dependent Protein Pyrophosphorylation in Mammalian Cells

  • Protocol
  • First Online:
Inositol Phosphates

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2091))

Abstract

Protein pyrophosphorylation involves the transfer of a high-energy β-phosphate from inositol pyrophosphates, such as diphosphoinositol pentakisphosphate (InsP7) to phosphorylated serine residues. Over a decade of research has established several proteins, involved in diverse physiological processes, as substrates of InsP7-mediated pyrophosphorylation. However, the need for detection of this posttranslational modification on endogenous proteins is paramount. “Back-pyrophosphorylation” is a simple technique to test whether a native protein undergoes InsP7-mediated pyrophosphorylation inside cells. The basis of this technique relies on the fact that a target protein isolated from cells with lower InsP7 levels exists in a hypo-pyrophosphorylated form as compared to the same protein isolated from cells with normal InsP7 levels. Hence, when radiolabeled InsP7 is added to a target protein immunoprecipitated from both these cell types, the hypopyrophosphorylated protein accepts a higher amount of radiolabeled phosphate when compared to the protein isolated from wild-type cells. This chapter provides detailed methods to identify an InsP7 target protein and conduct a back-pyrophosphorylation assay on a target protein immunoprecipitated from cells with normal versus reduced InsP7 levels, to confirm its endogenous pyrophosphorylation status.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bhandari R, Saiardi A, Ahmadibeni Y et al (2007) Protein pyrophosphorylation by inositol pyrophosphates is a posttranslational event. Proc Natl Acad Sci U S A 104:15305–15310. https://doi.org/10.1073/pnas.0707338104

    Article  PubMed  PubMed Central  Google Scholar 

  2. Thota SG, Unnikannan CP, Thampatty SR et al (2015) Inositol pyrophosphates regulate RNA polymerase I-mediated rRNA transcription in Saccharomyces cerevisiae. Biochem J 466:105–114. https://doi.org/10.1042/bj20140798

    Article  CAS  PubMed  Google Scholar 

  3. Szijgyarto Z, Garedew A, Azevedo C et al (2011) Influence of inositol pyrophosphates on cellular energy dynamics. Science 334:802–805. https://doi.org/10.1126/science.1211908

    Article  CAS  PubMed  Google Scholar 

  4. Azevedo C, Burton A, Ruiz-Mateos E et al (2009) Inositol pyrophosphate mediated pyrophosphorylation of AP3B1 regulates HIV-1 Gag release. Proc Natl Acad Sci U S A 106:21161–21166. https://doi.org/10.1073/pnas.0909176106

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chanduri M, Rai A, Malla AB et al (2016) Inositol hexakisphosphate kinase 1 (IP6K1) activity is required for cytoplasmic dynein-driven transport. Biochem J 473:3031–3047. https://doi.org/10.1042/bcj20160610

    Article  CAS  PubMed  Google Scholar 

  6. Penkert M, Yates LM, Schümann M et al (2017) Unambiguous identification of serine and threonine pyrophosphorylation using neutral-loss-triggered electron-transfer/higher-energy collision dissociation. Anal Chem 89:3672–3680. https://doi.org/10.1021/acs.analchem.6b05095

    Article  CAS  PubMed  Google Scholar 

  7. Saiardi A, Bhandari R, Resnick AC et al (2004) Phosphorylation of proteins by inositol pyrophosphates. Science 306:2101–2105. https://doi.org/10.1126/science.1103344

    Article  CAS  PubMed  Google Scholar 

  8. Bhandari R, Juluri KR, Resnick AC et al (2008) Gene deletion of inositol hexakisphosphate kinase 1 reveals inositol pyrophosphate regulation of insulin secretion, growth, and spermiogenesis. Proc Natl Acad Sci U S A 105:2349–2353. https://doi.org/10.1073/pnas.0712227105

    Article  PubMed  PubMed Central  Google Scholar 

  9. Azevedo C, Burton A, Bennett M et al (2010) Synthesis of InsP7 by the inositol hexakisphosphate kinase 1 (IP6K1). In: Barker CJ (ed) Inositol phosphates and lipids: methods and protocols, Methods in molecular biology, vol 645. Humana Press, New York, pp 73–85. https://doi.org/10.1007/978-1-60327-175-2_5

    Chapter  Google Scholar 

  10. Werner JK Jr, Speed T, Bhandari R (2010) Protein pyrophosphorylation by diphosphoinositol pentakisphosphate (InsP7). In: Barker CJ (ed) Inositol phosphates and lipids: methods and protocols, Methods in molecular biology, vol 645. Humana Press, New York, pp 87–102. https://doi.org/10.1007/978-1-60327-175-2_6

    Chapter  Google Scholar 

  11. Almeida JL, Cole KD, Plant AL (2016) Standards for cell line authentication and beyond. PLoS Biol 14:e1002476. https://doi.org/10.1371/journal.pbio.1002476

    Article  PubMed  PubMed Central  Google Scholar 

  12. Uhlen M, Fagerberg L, Hallstrom BM et al (2015) Proteomics. Tissue-based map of the human proteome. Science 347:1260419. https://doi.org/10.1126/science.1260419

    Article  CAS  PubMed  Google Scholar 

  13. Barker CJ, Illies C, Berggren PO (2010) HPLC separation of inositol polyphosphates. In: Barker CJ (ed) Inositol phosphates and lipids: methods and protocols, Methods in molecular biology, vol 645. Humana Press, New York, pp 21–46. https://doi.org/10.1007/978-1-60327-175-2_2

    Chapter  Google Scholar 

  14. Jadav RS, Kumar D, Buwa N et al (2016) Deletion of inositol hexakisphosphate kinase 1 (IP6K1) reduces cell migration and invasion, conferring protection from aerodigestive tract carcinoma in mice. Cell Signal 28:1124–1136. https://doi.org/10.1016/j.cellsig.2016.04.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gu C, Wilson MS, Jessen HJ et al (2016) Inositol pyrophosphate profiling of two HCT116 cell lines uncovers variation in InsP8 levels. PLoS One 11:e0165286. https://doi.org/10.1371/journal.pone.0165286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wilson MS, Bulley SJ, Pisani F et al (2015) A novel method for the purification of inositol phosphates from biological samples reveals that no phytate is present in human plasma or urine. Open Biol 5:150014. https://doi.org/10.1098/rsob.150014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Koldobskiy MA, Chakraborty A, Werner JK Jr et al (2010) p53-mediated apoptosis requires inositol hexakisphosphate kinase-2. Proc Natl Acad Sci U S A 107:20947–20951. https://doi.org/10.1073/pnas.1015671107

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wilson MS, Jessen HJ, Saiardi A (2019) The inositol hexakisphosphate kinases IP6K1 and -2 regulate human cellular phosphate homeostasis, including XPR1-mediated phosphate export. J Biol Chem 294(30):11597–11608.

    Article  Google Scholar 

  19. Sievers F, Wilm A, Dineen D et al (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539. https://doi.org/10.1038/msb.2011.75

    Article  PubMed  PubMed Central  Google Scholar 

  20. Goujon M, McWilliam H, Li W et al (2010) A new bioinformatics analysis tools framework at EMBL-EBI. Nucleic Acids Res 38:W695–W699. https://doi.org/10.1093/nar/gkq313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Swarna G. Thota, C.P. Unnikannan, and R. Manorama for generating radiolabeled InsP7. We thank all members of the Laboratory of Cell Signalling for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rashna Bhandari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chanduri, M., Bhandari, R. (2020). Back-Pyrophosphorylation Assay to Detect In Vivo InsP7-Dependent Protein Pyrophosphorylation in Mammalian Cells. In: Miller, G. (eds) Inositol Phosphates. Methods in Molecular Biology, vol 2091. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0167-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0167-9_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0166-2

  • Online ISBN: 978-1-0716-0167-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics