Skip to main content

Optimized Production of Lentiviral Vectors for CAR-T Cell

  • Protocol
  • First Online:
Chimeric Antigen Receptor T Cells

Abstract

Advances in the use of lentiviral vectors for gene therapy applications have created a need for large-scale manufacture of clinical-grade viral vectors for transfer of genetic materials. Lentiviral vectors can transduce a wide range of cell types and integrate into the host genome of dividing and nondividing cells, resulting in long-term expression of the transgene both in vitro and in vivo. In this chapter, we present a method to transfect human cells, creating an easy platform to produce lentiviral vectors for CAR-T cell application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brentjens RJ, Davila ML, Riviere I et al (2013) CD19-targeted t cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med 5:177ra38. https://doi.org/10.1126/scitranslmed.3005930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kochenderfer JN, Dudley ME, Carpenter RO et al (2013) Donor-derived CD19-targeted T cells cause regression of malignancy persisting after allogeneic hematopoietic stem cell transplantation. Blood 122:151. https://doi.org/10.1182/blood-2013-08-519413.R.E.G

    Article  Google Scholar 

  3. Kochenderfer JN, Dudley ME, Kassim SH et al (2015) Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J Clin Oncol 33:540–549. https://doi.org/10.1200/JCO.2014.56.2025

    Article  CAS  PubMed  Google Scholar 

  4. Kalos M, Levine BL, Porter DL et al (2011) T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med 3:95ra73. https://doi.org/10.1126/scitranslmed.3002842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Beatty GL, Haas AR, Maus MV et al (2014) Mesothelin-specific chimeric antigen receptor mRNA-engineered T cells induce antitumor activity in solid malignancies. Cancer Immunol Res 2:112–120. https://doi.org/10.1158/2326-6066.CIR-13-0170

    Article  CAS  PubMed  Google Scholar 

  6. Huls MH, Figliola MJ, Dawson MJ et al (2013) Clinical application of sleeping beauty and artificial antigen presenting cells to genetically modify T cells from peripheral and umbilical cord blood. J Vis Exp 72:e50070. https://doi.org/10.3791/50070

    Article  CAS  Google Scholar 

  7. Singh H, Figliola MJ, Dawson MJ et al (2013) Manufacture of clinical-grade CD19-specific T cells stably expressing chimeric antigen receptor using sleeping beauty system and artificial antigen presenting cells. PLoS One 8:e64138. https://doi.org/10.1371/journal.pone.0064138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Morita D, Nishio N, Saito S et al (2018) Enhanced expression of anti-CD19 chimeric antigen receptor in piggyBac transposon-engineered T cells. Mol Ther Methods Clin Dev 8:131–140. https://doi.org/10.1016/j.omtm.2017.12.003

    Article  CAS  PubMed  Google Scholar 

  9. Jensen MC, Clarke P, Tan G et al (2000) Human T Lymphocyte Genetic Modification with Naked DNA. Mol Ther 1:49–55. https://doi.org/10.1006/mthe.1999.0012

    Article  CAS  PubMed  Google Scholar 

  10. Suerth JD, Schambach A, Baum C (2012) Genetic modification of lymphocytes by retrovirus-based vectors. Curr Opin Immunol 24:598–608. https://doi.org/10.1016/j.coi.2012.08.007

    Article  CAS  PubMed  Google Scholar 

  11. Merten O-W (2004) State-of-the-art of the production of retroviral vectors. J Gene Med 6:S105–S124. https://doi.org/10.1002/jgm.499

    Article  CAS  PubMed  Google Scholar 

  12. Merten O-W, Charrier S, Laroudie N et al (2011) Large-scale manufacture and characterization of a lentiviral vector produced for clinical ex vivo gene therapy application. Hum Gene Ther 22:343–356. https://doi.org/10.1089/hum.2010.060

    Article  CAS  PubMed  Google Scholar 

  13. van der Loo JCM, Wright JF (2016) Progress and challenges in viral vector manufacturing. Hum Mol Genet 25:R42–R52. https://doi.org/10.1093/hmg/ddv451

    Article  CAS  PubMed  Google Scholar 

  14. Picanço-Castro V, Fontes AM, Russo-Carbolante EMDS, Covas DT (2008) Lentiviral-mediated gene transfer – a patent review. Expert Opin Ther Pat 18:525–539. https://doi.org/10.1517/13543776.18.5.525

    Article  Google Scholar 

  15. DuBridge RB, Tang P, Hsia HC et al (1987) Analysis of mutation in human cells by using an Epstein-Barr virus shuttle system. Mol Cell Biol 7:379–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gama-Norton L, Botezatu L, Herrmann S et al (2011) Lentivirus production is influenced by SV40 large T-antigen and chromosomal integration of the vector in HEK293 cells. Hum Gene Ther 22:1269–1279. https://doi.org/10.1089/hum.2010.143

    Article  CAS  PubMed  Google Scholar 

  17. Graessmann M, Menne J, Liebler M et al (1989) Helper activity for gene expression, a novel function of the SV40 enhancer. Nucleic Acids Res 17:6603–6612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of: São Paulo Research Foundation—FAPESP (2016/08374-5); the National Council for Scientific and Technological Development—CNPq (381128/2018-0); Research, Innovation, and Dissemination Centers—RIDC (2013/08135-2); and the National Institute of Science and Technology in Stem Cell and Cell Therapy—INCTC (465539/2014-9). The authors also acknowledge financial support from Secretaria Executiva do Ministério da Saúde (SE/MS), Departamento de Economia da Saúde, Investimentos e Desenvolvimento (DESID/SE), Programa Nacional de Apoio à Atenção Oncológica (PRONON) Process 25000.189625/2016-16.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virgínia Picanço-Castro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Moço, P.D., de Abreu Neto, M.S., Fantacini, D.M.C., Picanço-Castro, V. (2020). Optimized Production of Lentiviral Vectors for CAR-T Cell. In: Swiech, K., Malmegrim, K., Picanço-Castro, V. (eds) Chimeric Antigen Receptor T Cells. Methods in Molecular Biology, vol 2086. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0146-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0146-4_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0145-7

  • Online ISBN: 978-1-0716-0146-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics