Skip to main content

Genetic Prospects for Lymphedema Management

  • Chapter
  • First Online:
Lymphedema
  • 1862 Accesses

Abstract

Angiogenic revascularization of the lymphatics is an emerging research area that is likely to be important to the future therapeutics of lymphedema and other ­pathological conditions of the lymphatic vasculature.1,2 The potential to modulate the growth of lymphatic vessels also represents an important aspect of the biological response to the problem of tumor metastasis. Promising pro-lymphangiogenic gene therapy and exogenous molecular treatment methods are under current, active investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. An A, Rockson SG. The potential for molecular treatment strategies in lymphatic disease. Lymphat Res Biol. 2004;2(4):173-181.

    Article  PubMed  CAS  Google Scholar 

  2. Nakamura K, Rockson SG. Molecular targets for therapeutic lymphangiogenesis in lymphatic dysfunction and disease. Lymphat Res Biol. 2008;6(3-4):181-189.

    Article  PubMed  Google Scholar 

  3. Van der Auwera I, Cao Y, Tille JC, et al. First international consensus on the methodology of ­lymphangiogenesis quantification in solid human tumours. Br J Cancer. 2006;95(12):1611-1625.

    Article  PubMed  Google Scholar 

  4. Lohela M, Bry M, Tammela T, Alitalo K. VEGFs and receptors involved in angiogenesis versus lymphangiogenesis. Curr Opin Cell Biol. 2009;21(2):154-165.

    Article  PubMed  CAS  Google Scholar 

  5. Lohela M, Saaristo A, Veikkola T, Alitalo K. Lymphangiogenic growth factors, receptors and therapies. Thromb Haemost. 2003;90(2):167-184.

    PubMed  CAS  Google Scholar 

  6. Joukov V, Pajusola K, Kaipainen A, et al. A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J. 1996;15(7):1751.

    PubMed  CAS  Google Scholar 

  7. Karkkainen MJ, Haiko P, Sainio K, et al. Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat Immunol. 2004;5(1):74-80.

    Article  PubMed  CAS  Google Scholar 

  8. Wirzenius M, Tammela T, Uutela M, et al. Distinct vascular endothelial growth factor signals for lymphatic vessel enlargement and sprouting. J Exp Med. 2007;204(6):1431-1440.

    Article  PubMed  CAS  Google Scholar 

  9. Cueni LN, Detmar M. New insights into the molecular control of the lymphatic vascular system and its role in disease. J Invest Dermatol. 2006;126(10):2167-2177.

    Article  PubMed  CAS  Google Scholar 

  10. Tammela T, Saaristo A, Lohela M, et al. Angiopoietin-1 promotes lymphatic sprouting and hyperplasia. Blood. 2005;105(12):4642-4648.

    Article  PubMed  CAS  Google Scholar 

  11. Morisada T, Oike Y, Yamada Y, et al. Angiopoietin-1 promotes LYVE-1-positive lymphatic vessel formation. Blood. 2005;105(12):4649-4656.

    Article  PubMed  CAS  Google Scholar 

  12. Kim KE, Cho CH, Kim HZ, Baluk P, McDonald DM, Koh GY. In vivo actions of angiopoietins on quiescent and remodeling blood and lymphatic vessels in mouse airways and skin. Arterioscler Thromb Vasc Biol. 2007;27(3):564-570.

    Article  PubMed  CAS  Google Scholar 

  13. Oliver G. Lymphatic vasculature development. Nat Rev Immunol. 2004;4(1):35-45.

    Article  PubMed  CAS  Google Scholar 

  14. Kunstfeld R, Hirakawa S, Hong YK, et al. Induction of cutaneous delayed-type hypersensitivity reactions in VEGF-A transgenic mice results in chronic skin inflammation associated with persistent lymphatic hyperplasia. Blood. 2004;104(4):1048-1057.

    Article  PubMed  CAS  Google Scholar 

  15. Baluk P, Tammela T, Ator E, et al. Pathogenesis of persistent lymphatic vessel hyperplasia in chronic airway inflammation. J Clin Invest. 2005;115(2):247-257.

    PubMed  CAS  Google Scholar 

  16. Cueni LN, Detmar M. The lymphatic system in health and disease. Lymphat Res Biol. 2008;6(3-4):109-122.

    Article  PubMed  Google Scholar 

  17. Skobe M, Hawighorst T, Jackson DG, et al. Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med. 2001;7(2):192-198.

    Article  PubMed  CAS  Google Scholar 

  18. Mandriota SJ, Jussila L, Jeltsch M, et al. Vascular endothelial growth factor-C-mediated lymphangiogenesis promotes tumour metastasis. EMBO J. 2001;20(4):672-682.

    Article  PubMed  CAS  Google Scholar 

  19. Stacker SA, Caesar C, Baldwin ME, et al. VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nat Med. 2001;7(2):186-191.

    Article  PubMed  CAS  Google Scholar 

  20. Goldman J, Conley KA, Raehl A, et al. Regulation of lymphatic capillary regeneration by interstitial flow in skin. Am J Physiol Heart Circ Physiol. 2007;292(5):H2176-H2183.

    Article  PubMed  CAS  Google Scholar 

  21. Stacker SA, Achen MG, Jussila L, Baldwin ME, Alitalo K. Lymphangiogenesis and cancer metastasis. Nat Rev Cancer. 2002;2(8):573-583.

    Article  PubMed  CAS  Google Scholar 

  22. Kopfstein L, Veikkola T, Djonov VG, et al. Distinct roles of vascular endothelial growth factor-D in lymphangiogenesis and metastasis. Am J Pathol. 2007;170(4):1348-1361.

    Article  PubMed  CAS  Google Scholar 

  23. He Y, Kozaki K, Karpanen T, et al. Suppression of tumor lymphangiogenesis and lymph node metastasis by blocking vascular endothelial growth factor receptor 3 signaling. J Natl Cancer Inst. 2002;94(11):819-825.

    PubMed  CAS  Google Scholar 

  24. Szuba A, Skobe M, Karkkainen M, et al. Therapeutic lymphangiogenesis with human recombinant VEGF-C. FASEB J. 2002;16:U114-U130.

    Google Scholar 

  25. Yoon YS, Murayama T, Gravereaux E, et al. VEGF-C gene therapy augments postnatal lymphangiogenesis and ameliorates secondary lymphedema. J Clin Invest. 2003;111(5):717-725.

    PubMed  CAS  Google Scholar 

  26. Saaristo A, Tammela T, Timonen J, et al. Vascular endothelial growth factor-C gene therapy restores lymphatic flow across incision wounds. FASEB J. 2004;18(14):1707-1709.

    PubMed  CAS  Google Scholar 

  27. Tammela T, Saaristo A, Holopainen T, et al. Therapeutic differentiation and maturation of lymphatic vessels after lymph node dissection and transplantation. Nat Med. 2007;13(12):1458-1466.

    Article  PubMed  CAS  Google Scholar 

  28. Meige H. Dystophie oedematoeuse hereditaire. Presse Méd. 1898;6:341-343.

    Google Scholar 

  29. Rezaie T, Ghoroghchian R, Bell R, et al. Primary non-syndromic lymphoedema (Meige disease) is not caused by mutations in FOXC2. Eur J Hum Genet. 2008;16(3):300-304.

    Article  PubMed  CAS  Google Scholar 

  30. Fang J, Dagenais SL, Erickson RP, et al. Mutations in FOXC2 (MFH-1), a forkhead family transcription factor, are responsible for the hereditary lymphedema-distichiasis syndrome. Am J Hum Genet. 2000;67(6):1382-1388.

    Article  PubMed  CAS  Google Scholar 

  31. Brice G, Mansour S, Bell R, et al. Analysis of the phenotypic abnormalities in lymphoedema-distichiasis syndrome in 74 patients with FOXC2 mutations or linkage to 16q24. J Med Genet. 2002;39(7):478-483.

    Article  PubMed  CAS  Google Scholar 

  32. Kriederman BM, Myloyde TL, Witte MH, et al. FOXC2 haploinsufficient mice are a model for human autosomal dominant lymphedema-distichiasis syndrome. Hum Mol Genet. 2003;12(10):1179-1185.

    Article  PubMed  CAS  Google Scholar 

  33. Petrova TV, Karpanen T, Norrmen C, et al. Defective valves and abnormal mural cell recruitment underlie lymphatic vascular failure in lymphedema distichiasis. Nat Med. 2004;10(9):974-981.

    Article  PubMed  CAS  Google Scholar 

  34. Mellor RH, Brice G, Stanton AW, et al. Mutations in FOXC2 are strongly associated with primary valve failure in veins of the lower limb. Circulation. 2007;115(14):1912-1920.

    Article  PubMed  CAS  Google Scholar 

  35. Irrthum A, Devriendt K, Chitayat D, et al. Mutations in the transcription factor gene SOX18 underlie recessive and dominant forms of hypotrichosis-lymphedema-telangiectasia. Am J Hum Genet. 2003;72(6):1470-1478.

    Article  PubMed  CAS  Google Scholar 

  36. Francois M, Caprini A, Hosking B, et al. Sox18 induces development of the lymphatic vasculature in mice. Nature. 2008;456(7222):643-647.

    Article  PubMed  CAS  Google Scholar 

  37. Schacht V, Ramirez MI, Hong YK, et al. T1alpha/podoplanin deficiency disrupts normal lymphatic vasculature formation and causes lymphedema. EMBO J. 2003;22(14):3546-3556.

    Article  PubMed  CAS  Google Scholar 

  38. Ferrell RE, Levinson KL, Esman JH, et al. Hereditary lymphedema: evidence for linkage and genetic heterogeneity. Hum Mol Genet. 1998;7(13):2073-2078.

    Article  PubMed  CAS  Google Scholar 

  39. Karkkainen MJ, Ferrell RE, Lawrence EC, et al. Missense mutations interfere with VEGFR-3 signalling in primary lymphoedema. Nat Genet. 2000;25(2):153-159.

    Article  PubMed  CAS  Google Scholar 

  40. Karkkainen MJ, Saaristo A, Jussila L, et al. A model for gene therapy of human hereditary lymphedema. Proc Natl Acad Sci USA. 2001;98(22):12677-12682.

    Article  PubMed  CAS  Google Scholar 

  41. Rockson S. Preclinical models of lymphatic disease: the potential for growth factor and gene therapy. Ann NY Acad Sci. 2002;979:64-75.

    Article  PubMed  CAS  Google Scholar 

  42. Shin WS, Rockson SG. Animal models for the molecular and mechanistic study of lymphatic biology and disease. Ann NY Acad Sci. 2008;1131:50-74.

    Article  PubMed  CAS  Google Scholar 

  43. Nakamura K, Rockson SG. Biomarkers of lymphatic function and disease: state of the art and future directions. Mol Diagn Ther. 2007;11(4):227-238.

    PubMed  CAS  Google Scholar 

  44. Cheung L, Han J, Beilhack A, et al. An experimental model for the study of lymphedema and its response to therapeutic lymphangiogenesis. BioDrugs. 2006;20(6):363-370.

    Article  PubMed  Google Scholar 

  45. Saito Y, Nakagami H, Morishita R, et al. Transfection of human hepatocyte growth factor gene ameliorates secondary lymphedema via promotion of lymphangiogenesis. Circulation. 2006;114(11):1177-1184.

    Article  PubMed  CAS  Google Scholar 

  46. Jin DP, An A, Liu J, Nakamura K, Rockson SG. Therapeutic responses to exogenous VEGF-C administration in experimental lymphedema: immunohistochemical and molecular characterization. Lymphat Res Biol. 2009;7(1):47-57.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The author gratefully acknowledges the artistic contributions of Shauna Rockson to the development of this chapter.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Rockson, S.G. (2011). Genetic Prospects for Lymphedema Management. In: Lee, BB., Bergan, J., Rockson, S. (eds) Lymphedema. Springer, London. https://doi.org/10.1007/978-0-85729-567-5_59

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-567-5_59

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-566-8

  • Online ISBN: 978-0-85729-567-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics