Skip to main content

Part of the book series: Progress in Mathematics ((PM,volume 226))

Abstract

Consider hypersurfaces of fixed degree d in a fixed projective space Pn over ℚ. We present a conjecture about the fraction of these that have rational points, and present evidence for the conjecture, including a proof that a positive fraction of the hypersurfaces have points over every completion of ℚ, provided that n, d ≥ 2 and (n, d) ≠ (2, 2). Generalizations to number fields are discussed. One of our proofs uses a result of Colliot-Thélène, proved in an appendix, that there is no Brauer-Manin obstruction to the Hasse principle for smooth complete intersections of dimension ≥ 3 in projective space over number fields. Colliot-Thélène’s proof, in turn, uses a consequence of the Weak Lefschetz Theorem proved in an appendix by Katz.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Bosch, W. Lütkebohmert & M. RaynaudNéron Models, Springer-Verlag, Berlin, 1990.

    Book  MATH  Google Scholar 

  2. J.-L. Colliot-Thélène — Points rationnels sur les fibrations, Higher dimensional varieties and rational points, Proceedings of the 2001 Budapest conference (K. Böröczky, J. Kollár & T. Szamuely, eds.), Springer-Verlag, 2003, Bolyai Society Colloquium Publications.

    Google Scholar 

  3. J.-L. Colliot-Thélène, D. Coray & J.-J. Sansuc — Descente et principe de Hasse pour certaines variétés rationnelles, J. Reine Angew. Math. 320 (1980), 150–191.

    MATH  MathSciNet  Google Scholar 

  4. J.-L. Colliot-Thélène & J.-J. Sansuc — La descente sur les variétés rationnelles, Journées de Géométrie Algébrique d’Angers, Juillet 1979/Algebraic Geometry, Angers, 1979, Sijthoff & Noordhoff, Alphen aan den Rijn, 1980, 223–237.

    Google Scholar 

  5. J.-J. Sansuc, Sur le principe de Hasse et l’approximation faible, et sur une hypothèse de Schinzel, Acta Arith. 41 (1982), no. 1, 33–53.

    MATH  MathSciNet  Google Scholar 

  6. J.-J. Sansuc, La descente sur les variétés rationnelles. II, Duke Math. J. 54 (1987), no. 2, 375–492.

    Article  MATH  MathSciNet  Google Scholar 

  7. J.-L. Colliot-Thélène & P. Swinnerton-Dyer — Hasse principle and weak approximation for pencils of Severi-Brauer and similar varieties, J. Reine Angew. Math. 453 (1994), 49–112.

    MATH  MathSciNet  Google Scholar 

  8. A. Grothendieck — Le groupe de Brauer. II. Théorie cohomologique, Dix Exposés sur la Cohomologie des Schémas, North-Holland, Amsterdam, 1968, 67–87.

    Google Scholar 

  9. R. HartshorneAmple subvarieties of algebraic varieties, Notes written in collaboration with C. Musili. Lecture Notes in Mathematics, Vol. 156, Springer-Verlag, Berlin, 1970.

    Book  Google Scholar 

  10. R. Hartshorne, Algebraic geometry, Springer-Verlag, New York, 1977, Graduate Texts in Mathematics, No. 52.

    Google Scholar 

  11. J. KollárRational Curves on Algebraic Varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 32, Springer-Verlag, Berlin, 1996.

    Book  Google Scholar 

  12. S. Lang & A. Weil — Number of points of varieties in finite fields, Amer. J. Math. 76 (1954), 819–827.

    Article  MATH  MathSciNet  Google Scholar 

  13. B. Poonen — The Hasse principle for complete intersections in projective space, Rational points on algebraic varieties, Progr. Math., vol. 199, Birkhäuser, Basel, 2001, 307–311.

    Google Scholar 

  14. B. Poonen & M. Stoll — The Cassels-Tate pairing on polarized abelian varieties, Ann. of Math. (2)150 (1999), no. 3, 1109–1149.

    Article  MathSciNet  Google Scholar 

  15. M. Stoll, A local-global principle for densities, Topics in number theory (University Park, PA, 1997), Math. Appl., vol. 467, Kluwer Acad. Publ., Dordrecht, 1999, 241–244.

    Google Scholar 

  16. P. Swinnerton-Dyer — The Brauer group of cubic surfaces, Math. Proc. Cambridge Philos. Soc. 113 (1993), no. 3, 449–460.

    Article  MATH  MathSciNet  Google Scholar 

  17. J.-P. SerreLectures on the Mordell-Weil theorem, third ed., Friedr. Vieweg & Sohn, Braunschweig, 1997.

    Book  MATH  Google Scholar 

  18. Théorie des topos et cohomologie étale des schémas. Tome 3 — Springer-Verlag, Berlin, 1973, Séminaire de Géométrie Algébrique du Bois-Marie 1963-1964 (SGA 4), Dirigé par M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaboration de P. Deligne et B. Saint-Donat, Lecture Notes in Mathematics, Vol. 305.

    Google Scholar 

  19. P. Sarnak & L. Wang — Some hypersurfaces in P4 and the Hasse principle, C. R. Acad. Sci. Paris Sér. I Math. 321 (1995), no. 3, 319–322.

    MATH  MathSciNet  Google Scholar 

  20. J. A. Todd — On the topology of certain threefold loci, Proc. Edinburgh Math. Soc. (2) (1935), no. 4, 175–184.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Poonen, B., Voloch, J.F. (2004). Random Diophantine Equations. In: Poonen, B., Tschinkel, Y. (eds) Arithmetic of Higher-Dimensional Algebraic Varieties. Progress in Mathematics, vol 226. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-0-8176-8170-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-0-8176-8170-8_11

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6471-2

  • Online ISBN: 978-0-8176-8170-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics