Skip to main content

Complex Immersions and Arakelov Geometry

  • Chapter
The Grothendieck Festschrift

Part of the book series: Progress in Mathematics ((MBC))

Abstract

In this paper we establish an arithmetic Riemann-Roch-Grothendieck Theorem for immersions. Our final formula involves the Bott-Chern currents attached to certain holomorphic complexes of Hermitian vector bundles, which were previously introduced by the authors. The functorial properties of such currents are studied. Explicit formulas are given for Koszul complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baum, P., Fulton, W., MacPherson, R., Riemann-Roch for singular varieties, Publ. Math. IHES 45, 101–146 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  2. Bismut, J.M., Localisation du caractère de Chern en géométrie complexe et superconnexions, C.R.A.S t. 307, série I, 523–526 (1988).

    MathSciNet  MATH  Google Scholar 

  3. Bismut, J.M., Superconnection currents and complex immersions. Invent Math. 99, 59–113 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  4. Bismut, J.M., Equivariant Bott-Chern currents and the Ray-Singer analytic torsion, to appear in Math. Annalen.

    Google Scholar 

  5. Bismut, J.M., Gillet, H., Soulé, C., Analytic torsion and holomorphic determinant bundles, I. Comm. Math. Phys. 115, 49–78 (1988).

    Article  MATH  Google Scholar 

  6. Bismut, J.M., Gillet, H., Soulé, C., Analytic torsion and holomorphic determinant bundles, II. Comm. Math. Phys. 115, 79–126 (1988).

    Article  MATH  Google Scholar 

  7. Bismut, J.M., Gillet, H., Soulé, C., Analytic torsion and holomorphic determinant bundles, III. Comm. Math. Phys. 115, 301–351 (1988).

    Article  MATH  Google Scholar 

  8. Bismut, J.M., Gillet, H., Soulé, C., Bott-Chern currents and complex immersions. Duke Math Journal 60, 255–284 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  9. Bismut, J.M., Gillet, H., Soulé, C., Classes caractéristiques secondaires et immersions en géométrie complexe, C.R.A.S t. 307, Série I, 565–567 (1988).

    MATH  Google Scholar 

  10. Bott, R., Chern, S.S., Hermitian vector bundles and the equidistribution of the zeros of their holomorphic sections, Acta Math. 114, 71–112 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  11. Eilenberg, S., Homological dimension and local syzygies, Annals of Math. 64, 328–336 (1956).

    Article  MathSciNet  MATH  Google Scholar 

  12. Gillet, H., Soulé, C., Arithmetic Intersection Theory, 1988, Preprint IHES.

    MATH  Google Scholar 

  13. Gillet, H., Soulé, C., Characteristic classes for algebraic vector bundles with Hermitian metrics, I, Annals of Math. 131, 163–243 (1990); II, to appear.

    Article  MATH  Google Scholar 

  14. Gillet, H., Soulé, C., Analytic torsion and the arithmetic Todd genus, to appear in Topology.

    Google Scholar 

  15. Hartshorne, R., Algebraic Geometry, Graduate Texts in Math., 52, Berlin-Heidelberg-New York, Springer (1977).

    Book  MATH  Google Scholar 

  16. Hörmander, L., The analysis of linear partial differential operators, Vol. I., Grundl. der Math. Wiss., Band 256, Berlin-Heidelberg-New York: Springer (1983).

    MATH  Google Scholar 

  17. Manin, Yu. L., New dimensions m geometry, in Lecture Notes in Math. 1111, 59–101, Berlin-Heidelberg-New York, Springer (1985).

    Google Scholar 

  18. Mathai, V., Quillen D., Superconnections, Thorn classes and equivariant differential forms, Topology 25, 85–110 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  19. Quillen, D., Superconnections and the Chern character, Topology 24, 89–95 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  20. Quillen, D., Determinants of Cauchy-Riemann operators over a Riemann surface, Funct. Anal. Appl. 14, 31–34 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  21. Serre, J.P., Algèbre locale. Multiplicités, Lecture Notes in Math. 11, Berlin-Heidelberg-New York, Springer (1965).

    MATH  Google Scholar 

  22. Grothendieck, A. and al., Théorie des intersections et Théorème de Riemann-Roch, Lecture Notes in Math. 225, Berlin-Heidelberg-New York, Springer (1971).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bismut, JM., Gillet, H., Soulé, C. (2007). Complex Immersions and Arakelov Geometry. In: Cartier, P., Illusie, L., Katz, N.M., Laumon, G., Manin, Y.I., Ribet, K.A. (eds) The Grothendieck Festschrift. Progress in Mathematics. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-0-8176-4574-8_8

Download citation

Publish with us

Policies and ethics