Abstract
In this paper we establish an arithmetic Riemann-Roch-Grothendieck Theorem for immersions. Our final formula involves the Bott-Chern currents attached to certain holomorphic complexes of Hermitian vector bundles, which were previously introduced by the authors. The functorial properties of such currents are studied. Explicit formulas are given for Koszul complexes.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baum, P., Fulton, W., MacPherson, R., Riemann-Roch for singular varieties, Publ. Math. IHES 45, 101–146 (1975).
Bismut, J.M., Localisation du caractère de Chern en géométrie complexe et superconnexions, C.R.A.S t. 307, série I, 523–526 (1988).
Bismut, J.M., Superconnection currents and complex immersions. Invent Math. 99, 59–113 (1990).
Bismut, J.M., Equivariant Bott-Chern currents and the Ray-Singer analytic torsion, to appear in Math. Annalen.
Bismut, J.M., Gillet, H., Soulé, C., Analytic torsion and holomorphic determinant bundles, I. Comm. Math. Phys. 115, 49–78 (1988).
Bismut, J.M., Gillet, H., Soulé, C., Analytic torsion and holomorphic determinant bundles, II. Comm. Math. Phys. 115, 79–126 (1988).
Bismut, J.M., Gillet, H., Soulé, C., Analytic torsion and holomorphic determinant bundles, III. Comm. Math. Phys. 115, 301–351 (1988).
Bismut, J.M., Gillet, H., Soulé, C., Bott-Chern currents and complex immersions. Duke Math Journal 60, 255–284 (1990).
Bismut, J.M., Gillet, H., Soulé, C., Classes caractéristiques secondaires et immersions en géométrie complexe, C.R.A.S t. 307, Série I, 565–567 (1988).
Bott, R., Chern, S.S., Hermitian vector bundles and the equidistribution of the zeros of their holomorphic sections, Acta Math. 114, 71–112 (1968).
Eilenberg, S., Homological dimension and local syzygies, Annals of Math. 64, 328–336 (1956).
Gillet, H., Soulé, C., Arithmetic Intersection Theory, 1988, Preprint IHES.
Gillet, H., Soulé, C., Characteristic classes for algebraic vector bundles with Hermitian metrics, I, Annals of Math. 131, 163–243 (1990); II, to appear.
Gillet, H., Soulé, C., Analytic torsion and the arithmetic Todd genus, to appear in Topology.
Hartshorne, R., Algebraic Geometry, Graduate Texts in Math., 52, Berlin-Heidelberg-New York, Springer (1977).
Hörmander, L., The analysis of linear partial differential operators, Vol. I., Grundl. der Math. Wiss., Band 256, Berlin-Heidelberg-New York: Springer (1983).
Manin, Yu. L., New dimensions m geometry, in Lecture Notes in Math. 1111, 59–101, Berlin-Heidelberg-New York, Springer (1985).
Mathai, V., Quillen D., Superconnections, Thorn classes and equivariant differential forms, Topology 25, 85–110 (1986).
Quillen, D., Superconnections and the Chern character, Topology 24, 89–95 (1985).
Quillen, D., Determinants of Cauchy-Riemann operators over a Riemann surface, Funct. Anal. Appl. 14, 31–34 (1985).
Serre, J.P., Algèbre locale. Multiplicités, Lecture Notes in Math. 11, Berlin-Heidelberg-New York, Springer (1965).
Grothendieck, A. and al., Théorie des intersections et Théorème de Riemann-Roch, Lecture Notes in Math. 225, Berlin-Heidelberg-New York, Springer (1971).
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2007 Springer Science+Business Media New York
About this chapter
Cite this chapter
Bismut, JM., Gillet, H., Soulé, C. (2007). Complex Immersions and Arakelov Geometry. In: Cartier, P., Illusie, L., Katz, N.M., Laumon, G., Manin, Y.I., Ribet, K.A. (eds) The Grothendieck Festschrift. Progress in Mathematics. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-0-8176-4574-8_8
Download citation
DOI: https://doi.org/10.1007/978-0-8176-4574-8_8
Publisher Name: Birkhäuser, Boston, MA
Print ISBN: 978-0-8176-4566-3
Online ISBN: 978-0-8176-4574-8
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)